This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135216 #5 Nov 07 2013 04:24:55 %S A135216 18,3,13,1,7,1 %N A135216 a(n)= number of numbers with n+1 digits and without zero digits whose squares have maximal number of zero digits = A135215(n+1). %e A135216 a(1)=18 because we have 18 numbers with 2 digits and without zero digit whose square have maximal possible value 1 zero: 32, 33, 45, 47, 48, 49, 51, 52, 53, 55, 64, 71, 78, 84, 95, 97, 98, 99. %e A135216 a(2)=3 because we have 3 numbers with 3 digits and without zero digit whose square have maximal possible value 3 zeros: 448, 548, 949. %e A135216 a(3)=13 because we have 13 numbers with 4 digits and without zero digit whose square have maximal possible value 4 zeros: 3747, 3751, 4899, 6245, 6249, 6253, 7746, 7747, 7749, 7751, 7753, 9747, 9798. %e A135216 a(4)=1 because we have only one number with 5 digits and without zero digit whose square have maximal possible value 6 zeros: 62498. %e A135216 a(5)=7 because we have 7 numbers with 6 digits and without zero digit whose square have maximal possible value 7 zeros: 248998, 316245, 489898, 498999, 781249, 948951, 997998. %e A135216 a(6)=1 because we have only one number with 7 digits and without zero digit whose square have maximal possible value 10 zeros: 6244998. %t A135216 (*For a(7) *) c = 0; mx = 10; Do[Do[Do[Do[Do[Do[Do[k = 10^6b + 10^5q + 10^4r + 10^3p + 10^2s + 10n + m; w = IntegerDigits[k^2]; ile = 0; Do[If[w[[t]] == 0, ile = ile + 1], {t, 1, Length[w]}]; If[ile == mx, c = c + 1], {m, 1, 9}], {n, 1, 9}], {s, 1, 9}], {p, 1, 9}], {r, 1, 9}], {q, 1, 9}], {b, 1, 9}]; c (*Artur Jasinski*) %Y A135216 Cf. A134843, A134844, A134845, A134846, A134847, A134848, A134849, A135215, A135217, A135219. %K A135216 nonn,base %O A135216 1,1 %A A135216 _Artur Jasinski_, Nov 23 2007