This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135221 #9 Mar 27 2022 18:26:14 %S A135221 1,0,1,2,1,1,0,4,2,1,2,3,7,3,1,0,6,9,11,4,1,2,5,16,19,16,5,1,0,8,20, %T A135221 36,34,22,6,1,2,7,29,55,71,55,29,7,1,0,10,35,85,125,127,83,37,8,1,2,9, %U A135221 46,119,211,251,211,119,46,9,1,0,12,54,166,329,463,461,331,164,56,10,1 %N A135221 Triangle A007318 + A000012(signed) - I, I = Identity matrix, read by rows. %C A135221 row sums = A051049: (1, 1, 4, 7, 16, 31, 64, ...). %H A135221 G. C. Greubel, <a href="/A135221/b135221.txt">Rows n = 0..100 of triangle, flattened</a> %F A135221 T(n,k) = A007318 + A000012(signed) - Identity matrix, where A000012(signed) = (1; -1,1; 1,-1,1; ...). %F A135221 T(n,k) = (-1)^(n-k) + binomial(n,k), with T(n,n)=1. - _G. C. Greubel_, Nov 20 2019 %e A135221 First few rows of the triangle: %e A135221 1; %e A135221 0, 1; %e A135221 2, 1, 1; %e A135221 0, 4, 2, 1; %e A135221 2, 3, 7, 3, 1; %e A135221 0, 6, 9, 11, 4, 1; %e A135221 2, 5, 16, 19, 16, 5, 1; %e A135221 0, 8, 20, 36, 34, 22, 6, 1; %e A135221 2, 7, 29, 55, 71, 55, 29, 7, 1; %e A135221 ... %p A135221 seq(seq( `if`(k=n, 1, binomial(n,k) + (-1)^(n-k)), k=0..n), n=0..12); # _G. C. Greubel_, Nov 20 2019 %t A135221 T[n_, k_]:= T[n, k]= If[k==n, 1, Binomial[n, k] + (-1)^(n-k)] ; %t A135221 Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Nov 20 2019 *) %o A135221 (PARI) T(n,k) = if(k==n, 1, binomial(n,k) + (-1)^(n-k)); \\ _G. C. Greubel_, Nov 20 2019 %o A135221 (Magma) T:= func< n,k | k eq n select 1 else Binomial(n,k) +(-1)^(n-k) >; %o A135221 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 20 2019 %o A135221 (Sage) %o A135221 def T(n, k): %o A135221 if (k==n): return 1 %o A135221 else: return binomial(n,k) + (-1)^(n-k) %o A135221 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 20 2019 %o A135221 (GAP) %o A135221 T:= function(n,k) %o A135221 if k=n then return 1; %o A135221 else return Binomial(n,k) + (-1)^(n-k); %o A135221 fi; end; %o A135221 Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Nov 20 2019 %Y A135221 Cf. A007318, A051049. %K A135221 nonn,tabl %O A135221 0,4 %A A135221 _Gary W. Adamson_, Nov 23 2007 %E A135221 More terms added by _G. C. Greubel_, Nov 20 2019