This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135223 #13 Mar 27 2022 18:25:29 %S A135223 1,3,2,6,2,3,10,2,3,4,15,2,3,4,5,21,2,3,4,5,6,28,2,3,4,5,6,7,36,2,3,4, %T A135223 5,6,7,8,45,2,3,4,5,6,7,8,9,55,2,3,4,5,6,7,8,9,10,66,2,3,4,5,6,7,8,9, %U A135223 10,11,78,2,3,4,5,6,7,8,9,10,11,12,91,2,3,4,5,6,7,8,9,10,11,12,13 %N A135223 Triangle A000012 * A127648 * A103451, read by rows. %C A135223 Row sums = A028387. %H A135223 G. C. Greubel, <a href="/A135223/b135223.txt">Rows n = 1..100 of triangle, flattened</a> %F A135223 T(n,k) = A000012(n,k) * A127648(n,k) * A103451(n,k) as infinite lower triangular matrices. Replace left border of 1's in A002260 with (1, 3, 6, 10, 15, ...). %F A135223 T(n, k) = k with T(n,1) = binomial(n+1, 2). - _G. C. Greubel_, Nov 20 2019 %e A135223 First few rows of the triangle are: %e A135223 1; %e A135223 3, 2; %e A135223 6, 2, 3; %e A135223 10, 2, 3, 4; %e A135223 15, 2, 3, 4, 5; %e A135223 ... %p A135223 seq(seq( `if`(k=1, binomial(n+1,2), k), k=1..n), n=1..15); # _G. C. Greubel_, Nov 20 2019 %t A135223 T[n_, k_]:= T[n, k]= If[k==1, Binomial[n+1, 2], k]; Table[T[n, k], {n, 15}, {k,n}]//Flatten (* _G. C. Greubel_, Nov 20 2019 *) %o A135223 (PARI) T(n,k) = if(k==1, binomial(n+1,2), k); \\ _G. C. Greubel_, Nov 20 2019 %o A135223 (Magma) [k eq 1 select Binomial(n+1,2) else k: k in [1..n], n in [1..15]]; // _G. C. Greubel_, Nov 20 2019 %o A135223 (Sage) %o A135223 @CachedFunction %o A135223 def T(n,k): %o A135223 if (k==1): return binomial(n+1, 2) %o A135223 else: return k %o A135223 [[T(n,k) for k in (1..n)] for n in (1..15)] # _G. C. Greubel_, Nov 20 2019 %o A135223 (GAP) %o A135223 T:= function(n,k) %o A135223 if k=1 then return Binomial(n+1,2); %o A135223 else return k; %o A135223 fi; end; %o A135223 Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # _G. C. Greubel_, Nov 20 2019 %Y A135223 Cf. A002260, A103451, A127648. %K A135223 nonn,tabl %O A135223 1,2 %A A135223 _Gary W. Adamson_, Nov 23 2007 %E A135223 More terms added by _G. C. Greubel_, Nov 20 2019