This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135226 #15 Mar 27 2022 19:03:07 %S A135226 1,1,1,1,3,1,1,4,5,1,1,5,9,7,1,1,6,14,16,9,1,1,7,20,30,25,11,1,1,8,27, %T A135226 50,55,36,13,1,1,9,35,77,105,91,49,15,1,1,10,44,112,182,196,140,64,17, %U A135226 1,1,11,54,156,294,378,336,204,81,19,1 %N A135226 Triangle A135225 + A007318 - A103451, read by rows. %C A135226 Row sums = A083329: (1, 2, 5, 11, 23, 47, 95, ...). %H A135226 G. C. Greubel, <a href="/A135226/b135226.txt">Rows n = 0..100 of triangle, flattened</a> %F A135226 T(n,k) = A135225(n,k) + A007318(n,k) - A103451(n,k) as infinite lower triangular matrices. %F A135226 T(n,k) = ((n+k)/n)*binomial(n,k) with T(n,0) = T(n,n) = 1. - _G. C. Greubel_, Nov 20 2019 %e A135226 First few rows of the triangle: %e A135226 1; %e A135226 1, 1; %e A135226 1, 3, 1; %e A135226 1, 4, 5, 1; %e A135226 1, 5, 9, 7, 1; %e A135226 1, 6, 14, 16, 9, 1; %e A135226 1, 7, 20, 30, 25, 11, 1; %e A135226 1, 8, 27, 50, 55, 36, 13, 1; %e A135226 ... %p A135226 T:= proc(n, k) option remember; %p A135226 if k=0 or k=n then 1 %p A135226 else ((n+k)/n)*binomial(n,k) %p A135226 fi; end: %p A135226 seq(seq(T(n, k), k=0..n), n=0..10); # _G. C. Greubel_, Nov 20 2019 %t A135226 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, ((n+k)/n) Binomial[n, k]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 20 2019 *) %o A135226 (PARI) T(n,k) = if(k==0 || k==n, 1, ((n+k)/n)*binomial(n,k)); \\ _G. C. Greubel_, Nov 20 2019 %o A135226 (Magma) %o A135226 T:= func< n,k | k eq 0 or k eq n select 1 else ((n+k)/n)*Binomial(n,k) >; %o A135226 [T(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Nov 20 2019 %o A135226 (Sage) %o A135226 @CachedFunction %o A135226 def T(n,k): %o A135226 if (k==0 or k==n): return 1 %o A135226 else: return ((n+k)/n)*binomial(n, k) %o A135226 [[T(n,k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 20 2019 %o A135226 (GAP) %o A135226 T:= function(n,k) %o A135226 if k=0 or k=n then return 1; %o A135226 else return ((n+k)/n)*Binomial(n,k); %o A135226 fi; end; %o A135226 Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Nov 20 2019 %Y A135226 Cf. A007318, A083329, A103451, A135225. %K A135226 nonn,tabl %O A135226 0,5 %A A135226 _Gary W. Adamson_, Nov 23 2007 %E A135226 Corrected and extended by _Philippe Deléham_, Nov 14 2011