This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135228 #9 Sep 08 2022 08:45:32 %S A135228 1,1,1,3,1,1,5,2,2,1,11,2,4,3,1,21,3,6,7,4,1,43,3,9,13,11,5,1,85,4,12, %T A135228 22,24,16,6,1,171,4,16,34,46,40,22,7,1,341,5,20,50,80,86,62,29,8,1, %U A135228 683,5,25,70,130,166,148,91,37,9,1,1365,6,30,95,200,296,314,239,128,46,10,1 %N A135228 Triangle A000012(signed) * A007318 * A103451, read by rows. %C A135228 Row sums = A000975: (1, 2, 5, 10, 21, 42, 85, 170, ...). %C A135228 Left border = A001045: (1, 1, 3, 5, 11, 21, 43, ...). %H A135228 G. C. Greubel, <a href="/A135228/b135228.txt">Rows n = 0..100 of triangle, flattened</a> %F A135228 T(n,k) = A000012(signed) * A007318 * A103451 as infinite lower triangular matrices. A000012(signed) = (1; -1,1; 1,-1,1; ...). %F A135228 T(n,k) = Sum_{j=0..floor((n-1)/2)} binomial(n-2*j-1, k-1), with T(n,0) = %F A135228 (2^(n+1) - (-1)^(n+1))/3 (Jacobsthal_{n+1}).- _G. C. Greubel_, Nov 20 2019 %e A135228 First few rows of the triangle are: %e A135228 1; %e A135228 1, 1; %e A135228 3, 1, 1; %e A135228 5, 2, 2, 1; %e A135228 11, 2, 4, 3, 1; %e A135228 21, 3, 6, 7, 4, 1; %e A135228 43, 3, 9, 13, 11, 5, 1; %e A135228 85, 4, 12, 22, 24, 16, 6, 1; %e A135228 171, 4, 16, 34, 46, 40, 22, 7, 1; %e A135228 ... %p A135228 T:= proc(n, k) option remember; %p A135228 if k=0 then (2^(n+1) +(-1)^n)/3 %p A135228 else add(binomial(n-2*j-1, k-1), j=0..floor((n-1)/2)) %p A135228 fi; end: %p A135228 seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Nov 20 2019 %t A135228 T[n_, k_]:= T[n, k]= If[k==0, (2^(n+1) +(-1)^n)/3, Sum[Binomial[n-1-2*j, k-1], {j,0,Floor[(n-1)/2]}]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 20 2019 *) %o A135228 (PARI) T(n,k) = if(k==0, (2^(n+1) +(-1)^n)/3, sum(j=0, (n-1)\2, binomial( n-2*j-1, k-1)) ); \\ _G. C. Greubel_, Nov 20 2019 %o A135228 (Magma) %o A135228 function T(n,k) %o A135228 if k eq 0 then return (2^(n+1) +(-1)^n)/3; %o A135228 else return (&+[Binomial(n-2*j-1, k-1): j in [0..Floor((n-1)/2)]]); %o A135228 end if; return T; end function; %o A135228 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 20 2019 %o A135228 (Sage) %o A135228 @CachedFunction %o A135228 def T(n, k): %o A135228 if (k==0): return (2^(n+1) +(-1)^n)/3 %o A135228 else: return sum(binomial(n-2*j-1, k-1) for j in (0..floor((n-1)/2))) %o A135228 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 20 2019 %Y A135228 Cf. A000975, A001045, A007318, A103451. %K A135228 nonn,tabl %O A135228 0,4 %A A135228 _Gary W. Adamson_, Nov 23 2007 %E A135228 Offset changed by _G. C. Greubel_, Nov 20 2019