This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135230 #7 Sep 08 2022 08:45:32 %S A135230 1,1,1,2,1,1,1,2,2,1,2,2,4,3,1,1,3,6,7,4,1,2,3,9,13,11,5,1,1,4,12,22, %T A135230 24,16,6,1,2,4,16,34,46,40,22,7,1,1,5,20,50,80,86,62,29,8,1,2,5,25,70, %U A135230 130,166,148,91,37,9,1,1,6,30,95,200,296,314,239,128,46,10,1 %N A135230 Triangle A103451 * A000012(signed) * A007318, read by rows. %C A135230 row sums = A135231 %H A135230 G. C. Greubel, <a href="/A135230/b135230.txt">Rows n = 0..100 of triangle, flattened</a> %F A135230 T(n,k) = A103451 * A000012(signed) * A007318, where A000012(signed) = (1; -1,1; 1,-1,1;...). %F A135230 T(n,k) = Sum_{j=0..floor((n-1)/2)} binomial(n-2*j-1, k-1), with T(n,0) = (3+(-1)^n)/2 and T(n,n) = 1. - _G. C. Greubel_, Nov 20 2019 %e A135230 First few rows of the triangle are: %e A135230 1; %e A135230 1, 1; %e A135230 2, 1, 1; %e A135230 1, 2, 2, 1; %e A135230 2, 2, 4, 3, 1; %e A135230 1, 3, 6, 7, 4, 1; %e A135230 2, 3, 9, 13, 11, 5, 1; %e A135230 1, 4, 12, 22, 24, 16, 6, 1; %e A135230 2, 4, 16, 34, 46, 40, 22, 7, 1; %e A135230 ... %p A135230 T:= proc(n, k) option remember; %p A135230 if k=n then 1 %p A135230 elif k=0 then (3+(-1)^n)/2 %p A135230 else add(binomial(n-2*j-1, k-1), j=0..floor((n-1)/2)) %p A135230 fi; end: %p A135230 seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Nov 20 2019 %t A135230 T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, (3+(-1)^n)/2, Sum[Binomial[n-1 - 2*j, k-1], {j, 0, Floor[(n-1)/2]}] ]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Nov 20 2019 *) %o A135230 (PARI) T(n,k) = if(k==n, 1, if(k==0, (3+(-1)^n)/2, sum(j=0, (n-1)\2, binomial( n-2*j-1, k-1)) )); \\ _G. C. Greubel_, Nov 20 2019 %o A135230 (Magma) %o A135230 function T(n,k) %o A135230 if k eq n then return 1; %o A135230 elif k eq 0 then return (3+(-1)^n)/2; %o A135230 else return (&+[Binomial(n-2*j-1, k-1): j in [0..Floor((n-1)/2)]]); %o A135230 end if; return T; end function; %o A135230 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 20 2019 %o A135230 (Sage) %o A135230 @CachedFunction %o A135230 def T(n, k): %o A135230 if (k==n): return 1 %o A135230 elif (k==0): return (3+(-1)^n)/2 %o A135230 else: return sum(binomial(n-2*j-1, k-1) for j in (0..floor((n-1)/2))) %o A135230 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 20 2019 %Y A135230 Cf. A000012, A007318, A103451, A135231. %K A135230 nonn,tabl %O A135230 0,4 %A A135230 _Gary W. Adamson_, Nov 23 2007 %E A135230 More terms and offset changed by _G. C. Greubel_, Nov 20 2019