This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135274 #13 Oct 08 2016 02:07:52 %S A135274 6,13,19,25,37,47,49,65,69,77,89,103,107,113,131,141,151,159,173,185, %T A135274 193,199,213,239,235,247,267,275,279,287,317,317,335,353,355,373,385, %U A135274 393,409,427,433,441,453,469,469,499,503,513,535,565 %N A135274 a(n) = prime(2*n) - prime(2*n-1) + prime(2*n+1). %C A135274 Original name was: Difference and sum of staircase primes according to the rule: bottom - top + next top. %C A135274 We list the primes in staircase fashion as follows. %C A135274 2 %C A135274 3.5 %C A135274 ..7.11 %C A135274 ....13.17 %C A135274 .......19.23 %C A135274 ..........29.31 %C A135274 .............37.41 %C A135274 ..................... %C A135274 ....................n %C A135274 ....................n+1.n+2. %C A135274 The right diagonal, RD(n), is the set of top primes and the left diagonal, LD(x), is the set of bottom primes. Then a(n) = LD(n+1) - RD(n) + RD(n+2). %H A135274 G. C. Greubel, <a href="/A135274/b135274.txt">Table of n, a(n) for n = 1..1000</a> %F A135274 a(n) = A181428(2*n-1). - _R. J. Mathar_, Sep 10 2016 %t A135274 Join[{6},#[[3]]-#[[2]]+#[[4]]&/@Partition[Prime[Range[2,110]],4,2]] (* _Harvey P. Dale_, Nov 16 2011 *) %o A135274 (PARI) g(n) = forstep(x=1,n,2,y=prime(x+1)-prime(x)+prime(x+2);print1(y",")) %o A135274 (PARI) a(n)=prime(2*n)-prime(2*n-1)+prime(2*n+1); \\ _Joerg Arndt_, Oct 08 2016 %K A135274 nonn,easy %O A135274 1,1 %A A135274 _Cino Hilliard_, Dec 02 2007 %E A135274 New name from _Joerg Arndt_, Oct 08 2016