cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135291 Product of the nonzero exponents in the prime factorization of n!.

This page as a plain text file.
%I A135291 #38 Jun 02 2025 14:40:01
%S A135291 1,1,1,1,3,3,8,8,14,28,64,64,100,100,220,396,540,540,768,768,1152,
%T A135291 1944,4104,4104,5280,7920,16560,21528,31200,31200,40768,40768,48608,
%U A135291 78120,161280,230400,277440,277440,571200,907200,1108080,1108080,1440504,1440504,2019168
%N A135291 Product of the nonzero exponents in the prime factorization of n!.
%C A135291 a(n) = A005361(n!). For n >= 2, a(n) = the number of positive divisors of n! which themselves are each divisible by every prime <= n. For p = any prime, a(p) = a(p-1). a(0)=a(1)=1 because the product of the exponents is over the empty set.
%H A135291 Alois P. Heinz, <a href="/A135291/b135291.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from G. C. Greubel)
%H A135291 Jean-Marie De Koninck and William Verreault, <a href="https://doi.org/10.2298/PIM2429045D">Arithmetic functions at factorial arguments</a>, Publications de l'Institut Mathematique, Vol. 115, No. 129 (2024), pp. 45-76.
%F A135291 a(n) = A000005(A049614(n)). - _Ridouane Oudra_, Sep 02 2019
%F A135291 a(n) = exp((n/log(n)) * (Sum_{k=0..M} e_k/log(n)^k) + O(n/log(n)^(M+2))) for any given integer M >= 0, where e_k = k! * Sum_{j=0..k} (1/j!) * Sum_{s>=1} (log(s+1)^j/(s+1))*log(1+1/s) are constants (e_0 = A085361) (De Koninck and Verreault, 2024, p. 54, Theorem 4.4). - _Amiram Eldar_, Dec 10 2024
%e A135291 6! = 720 has a prime factorization of 2^4 * 3^2 * 5^1. So a(6) = 4*2*1 = 8.
%e A135291 Also, 720 is divisible by a(6)=8 positive divisors which themselves are each divisible by every prime <= 6 (i.e., are each divisible by 2*3*5 = 30): 30, 60, 90, 120, 180, 240, 360, 720.
%p A135291 A005361 := proc(n) mul( op(2,i),i=ifactors(n)[2]) ; end: A135291 := proc(n) A005361(n!) ; end: seq(A135291(n),n=0..50) ; # _R. J. Mathar_, Dec 12 2007
%p A135291 # second Maple program:
%p A135291 b:= proc(n) option remember; `if`(n<1, 1,
%p A135291       b(n-1)+add(i[2]*x^i[1], i=ifactors(n)[2]))
%p A135291     end:
%p A135291 a:= n-> mul(i, i=coeffs(b(n))):
%p A135291 seq(a(n), n=0..44);  # _Alois P. Heinz_, Jun 02 2025
%t A135291 Table[Product[FactorInteger[n! ][[i, 2]], {i, 1, Length[FactorInteger[n! ]]}], {n, 0, 50}] (* _Stefan Steinerberger_, Dec 05 2007 *)
%t A135291 Table[Times@@Transpose[FactorInteger[n!]][[2]],{n,0,50}] (* _Harvey P. Dale_, Aug 16 2011 *)
%o A135291 (PARI) valp(n,p)=my(s); while(n\=p, s+=n); s
%o A135291 a(n)=my(s=1); forprime(p=2,n\2, s*=valp(n,p)); s \\ _Charles R Greathouse IV_, Oct 09 2016
%o A135291 (Python)
%o A135291 from math import prod
%o A135291 from collections import Counter
%o A135291 from sympy import factorint
%o A135291 def A135291(n): return prod(sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values()) # _Chai Wah Wu_, Jun 02 2025
%Y A135291 Cf. A005361, A000005, A049614, A085361.
%K A135291 nonn
%O A135291 0,5
%A A135291 _Leroy Quet_, Dec 03 2007
%E A135291 More terms from _Stefan Steinerberger_ and _R. J. Mathar_, Dec 05 2007