cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135297 Number of Riemann zeta function zeros on the critical line, less than n.

This page as a plain text file.
%I A135297 #80 Feb 16 2025 08:33:07
%S A135297 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,5,5,
%T A135297 5,5,5,6,6,6,7,7,7,8,8,8,8,8,9,10,10,10,11,11,11,11,12,12,12,13,14,14,
%U A135297 14,14,14,15,15,16,16,17,17,17,18,18,18,19,19,20,20,21,21,21,22,22,23,23,23,24,25,25,25,25,26,26,27,28,28,28,29,29
%N A135297 Number of Riemann zeta function zeros on the critical line, less than n.
%C A135297 This sequence is just the cumulative distribution of the zeros.
%C A135297 Apart from differing singularities, the beginning of this sequence agrees with the zeta zero counting functions (RiemannSiegelTheta(n) + im(log(zeta(1/2 + i*n))))/Pi + 1 and (sign(im(zeta(1/2 + i*n))) - 1)/2 + floor(n/(2*Pi)*log(n/(2*Pi*e)) + 7/8) + 1, but disagrees later. The first deviations are seen in the continuous counting function at locations of zeta zeros with indices A153815. See also A282793 and A282794. - _Mats Granvik_, Feb 21 2017
%D A135297 H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0)
%H A135297 T. D. Noe, <a href="/A135297/b135297.txt">Table of n, a(n) for n = 1..10000</a>
%H A135297 Mats Granvik, <a href="http://math.stackexchange.com/q/2136668/8530">Mathematics Stackexchange</a>
%H A135297 Andrew Guinand, <a href="http://www.archive.org/stream/proceedingsofthe032881mbp#page/n115/mode/2up">A summation formula in the theory of prime numbers, page 111</a>
%H A135297 Andrew Guinand, <a href="https://doi.org/10.1112/plms/s2-50.2.107">A summation formula in the theory of prime numbers</a>, Proc. London Math. Soc. (1948) s2-50 (1): 107-119, see page 111.
%H A135297 Raymond Manzoni, <a href="http://math.stackexchange.com/a/442686/8530">Riemann Zeta function - number of zeros</a>, Mathematics Stackexchange, 2013.
%H A135297 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/RiemannZetaFunctionZeros.html">MathWorld: Riemann Zeta Function Zeros</a>
%H A135297 Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann_zeta_function">Riemann Zeta Function</a>
%H A135297 <a href="/index/Z#zeta_function">Index entries for sequences related to zeta function</a>
%F A135297 a(n) ~ n log (n/(2*Pi*e)) / (2*Pi). - _Charles R Greathouse IV_, Mar 11 2011, corrected by _Hal M. Switkay_, Oct 03 2021
%F A135297 From _Mats Granvik_, May 13 2017: (Start)
%F A135297 a(n) ~ im(LogGamma(1/4 + i*n/2))/Pi - n/(2*Pi)*log(Pi) + im(log(zeta(1/2 + i*n)))/Pi + 1.
%F A135297 a(n) ~ floor(im(LogGamma(1/4 + i*n/2))/Pi - n/(2*Pi)*log(Pi) + 1) + (sign(im(zeta (1/2 + i*n))) - 1)/2 + 1.
%F A135297 a(n) ~ (RiemannSiegelTheta(n) + im(log(zeta(1/2 + i*n))))/Pi + 1.
%F A135297 a(n) ~ (floor(RiemannSiegelTheta(n)/Pi + 1)) + (sign(im(zeta(1/2 + i*n))) - 1)/2 + 1.
%F A135297 a(n) ~ n/(2*Pi)*log(n/(2*Pi*e)) + 7/8 + (im(log(zeta(1/2 + i*n))))/Pi - 1 - O(n^(-1)) + 1.
%F A135297 a(n) ~ floor(n/(2*Pi)*log(n/(2*Pi*e)) + 7/8) + (sign(im(zeta(1/2 + i*n))) - 1)/2 + 1.
%F A135297 See A286707 for exact relations.
%F A135297 (End)
%e A135297 The first nontrivial zero is 1/2 + 14.1347...*i; hence, a(15)=1.
%t A135297 nn = 100; t = Table[0, {nn}]; k = 1; While[z = Im[ZetaZero[k]]; z < nn, k++; t[[Ceiling[z] ;; nn]]++]
%t A135297 With[{zz=Ceiling[Im[N[ZetaZero[Range[30]]]]]},Table[If[MemberQ[zz,n],1,0],{n,Max[zz]}]]//Accumulate (* _Harvey P. Dale_, Aug 15 2017 *)
%o A135297 (Sage)
%o A135297 # This function makes sure no zeros are missed.
%o A135297 def A135297_list(n):
%o A135297     Z = lcalc.zeros(n)
%o A135297     R = []; pos = 1; count = 0
%o A135297     for z in Z:
%o A135297         while pos < z:
%o A135297             R.append(count)
%o A135297             pos += 1
%o A135297         count += 1
%o A135297     return R
%o A135297 A135297_list(30) # _Peter Luschny_, May 02 2014
%o A135297 (PARI) a(n) = #lfunzeros(L, n) \\ _Felix Fröhlich_, Jun 10 2019
%Y A135297 Cf. A002410, A013629, A092783.
%K A135297 nonn
%O A135297 1,22
%A A135297 _Jean-François Alcover_, Mar 09 2011