cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135299 Pascal's triangle, but the last element of the row is the sum of all the previous terms.

This page as a plain text file.
%I A135299 #16 Jun 25 2024 01:30:56
%S A135299 1,1,2,1,3,8,1,4,11,32,1,5,15,43,128,1,6,20,58,171,512,1,7,26,78,229,
%T A135299 683,2048,1,8,33,104,307,912,2731,8192,1,9,41,137,411,1219,3643,10923,
%U A135299 32768,1,10,50,178,548,1630,4862,14566,43691,131072
%N A135299 Pascal's triangle, but the last element of the row is the sum of all the previous terms.
%H A135299 G. C. Greubel, <a href="/A135299/b135299.txt">Table of n, a(n) for the first 25 rows</a>
%F A135299 T(0,0) = 1;
%F A135299 T(n,0) = 1;
%F A135299 T(n,k) = T(n-1, k-1) + T(n-1, k) if k < n;
%F A135299 T(n,n) = (Sum_{j=0..n-1} Sum_{i=0..j} T(j,i)) + Sum_{i=0..n-1} T(n,i) [i.e., sum of all earlier terms of the triangle].
%F A135299 T(n,n) = (4^n)/2 for n > 0;
%F A135299 T(n,n) = 2*Sum_{i=0..n-1} T(n,i).
%e A135299 T(2,1) = T(1,0) + T(1,1) = 1 + 2 = 3;
%e A135299 T(2,2) = T(0,0) + T(1,0) + T(1,1) + T(2,0) + T(2,1) = 1 + 1 + 2 + 1 + 3 = 8.
%e A135299 From _G. C. Greubel_, Oct 09 2016: (Start)
%e A135299 The triangle is:
%e A135299   1;
%e A135299   1, 2;
%e A135299   1, 3,  8;
%e A135299   1, 4, 11, 32;
%e A135299   1, 5, 15, 43, 128;
%e A135299   1, 6, 20, 58, 171, 512;
%e A135299   ... (End)
%t A135299 T[0, 0] := 1; T[n_, 0] := 1; T[n_, k_] := T[n - 1, k] + T[n - 1, k - 1]; T[n_, n_] := 2^(2*n - 1); Table[T[n, k], {n, 0, 5}, {k, 0, n}] (* _G. C. Greubel_, Oct 09 2016 *)
%Y A135299 Cf. A007318, A067337.
%K A135299 nonn,tabl
%O A135299 0,3
%A A135299 _Jose Ramon Real_, Dec 04 2007