A135306 Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDDU's.
1, 1, 2, 4, 1, 9, 5, 23, 17, 2, 63, 54, 15, 178, 177, 69, 5, 514, 594, 273, 49, 1515, 1997, 1056, 280, 14, 4545, 6698, 4077, 1308, 168, 13827, 22487, 15545, 5745, 1140, 42, 42540, 75701, 58377, 24695, 6105, 594, 132124, 255455, 216864, 103862, 29810
Offset: 0
Examples
Triangle begins: 1; 1; 2; 4, 1; 9, 5; 23, 17, 2; 63, 54, 15; 178, 177, 69, 5; 514, 594, 273, 49; 1515, 1997, 1056, 280, 14; 4545, 6698, 4077, 1308, 168; ... T(4,1) = 5 because we have U(UDDU)DUD, U(UDDU)UDD, UU(UDDU)DD, UDU(UDDU)D and UUD(UDDU)D (the UDDU's are shown between parentheses).
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
Programs
-
Maple
A135306 := proc(n,k) if n =0 then 1 ; else add((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((n-1)/2)) ; %*binomial(n,k)/n ; fi ; end: for n from 0 to 20 do for k from 0 to max(0,(n-1)/2) do printf("%a, ",A135306(n,k)) ; od: od: # R. J. Mathar, Dec 08 2007 T:=proc(n,k) options operator, arrow: binomial(n,k)*(sum((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((1/2)*n-1/2)))/n end proc: 1; for n to 13 do seq(T(n,k),k=0..ceil((n-2)*1/2)) end do; # yields sequence in triangular form; Emeric Deutsch, Dec 15 2007
-
Mathematica
T[n_, k_] := Binomial[n, k]*Sum[(-1)^(j-k)*Binomial[n-k, j-k]*Binomial[2*n - 3*j, -j+n+1], {j, k, (n-1)/2}]/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 13}, {k, 0, If[n == 0, 0, Quotient[n-1, 2]]}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Emeric Deutsch *)
Formula
From Emeric Deutsch, Dec 15 2007: (Start)
T(n,k) = (1/n)*binomial(n,k)*Sum_{j=k..floor((n-1)/2)} (-1)^(j-k)*binomial(n-k, j-k)*binomial(2n-3j, n-j+1).
G.f.: G = G(t,z) satisfies z*G^3 - ((1-t)*z+1)*G^2 + (1+2*(1-t)*z)*G - (1-t)*z = 0. (End)
Extensions
More terms from R. J. Mathar and Emeric Deutsch, Dec 08 2007
Comments