This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135323 #13 May 29 2016 13:36:44 %S A135323 1,2,3,4,5,12,7,8,9,20,11,36,13,28,30,16,17,54,19,60,42,44,23,96,25, %T A135323 52,27,84,29,180,31,32,66,68,70,216,37,76,78,160,41,252,43,132,135,92, %U A135323 47,240,49,150,102,156,53,216,110,224,114,116,59,720,61,124,189,64,130,396 %N A135323 a(1)=1, a(n) = Sum_{p=prime, p|n} a(n/p)*p. %C A135323 If p^k is a power of a prime, then a(p^k) = p^k. %H A135323 Ivan Neretin, <a href="/A135323/b135323.txt">Table of n, a(n) for n = 1..10000</a> %F A135323 a(n) = n * A008480(n). - _Ivan Neretin_, May 29 2016 %e A135323 The primes that divide 12 are 2 and 3. So a(12) = a(12/2)*2 + a(12/3)*3 = 12*2 + 4*3 = 36. %t A135323 a = {1}; For[n = 2, n < 100, n++, b = Select[Divisors[n], PrimeQ[ # ] &]; AppendTo[a, Sum[a[[n/b[[j]]]]*b[[j]], {j, 1, Length[b]}]]]; a (* _Stefan Steinerberger_, Dec 07 2007 *) %t A135323 Fold[Append[#1, Plus @@ ((p = Select[Divisors[#2], PrimeQ])*#1[[#2/p]])] &, {1}, Range[2, 66]] (* _Ivan Neretin_, May 29 2016 *) %K A135323 nonn %O A135323 1,2 %A A135323 _Leroy Quet_, Dec 06 2007 %E A135323 More terms from _Stefan Steinerberger_, Dec 07 2007