A135324 a(n) = Sum_{k=1..phi(n)} k*t(k), where t(k) is the k-th positive integer which is coprime to n and phi(n) is the number of positive integers which are <= n and are coprime to n.
1, 1, 5, 7, 30, 11, 91, 50, 120, 64, 385, 76, 650, 191, 354, 372, 1496, 243, 2109, 468, 1081, 795, 3795, 560, 3450, 1336, 3033, 1432, 7714, 692, 9455, 2856, 4595, 3056, 6974, 1836, 16206, 4299, 7766, 3576, 22140, 2126, 25585, 6100, 8922, 7711, 33511
Offset: 1
Keywords
Examples
The positive integers that are coprime to 12 and are <= 12 are 1,5,7,11. So a(12) = 1*1 + 2*5 + 3*7 + 4*11 = 1+10+21+44 =76.
Programs
-
Maple
A126572 := proc(n,k) local a,i ; a := 1 ; for i from 1 to k do if i = k then RETURN(a) ; fi ; a := a+1 ; while gcd(a,n) <> 1 do a := a+1 ; od; od: end: A135324 := proc(n) add( k*A126572(n,k),k=1..numtheory[phi](n)) ; end: for n from 1 to 80 do printf("%d, ",A135324(n) ) ; od: # R. J. Mathar, Jan 30 2008
Formula
Extensions
More terms from R. J. Mathar, Jan 30 2008