This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135331 #8 Oct 27 2015 04:44:08 %S A135331 1,1,2,5,13,1,36,6,105,27,320,108,1,1011,409,10,3289,1508,65,10957, %T A135331 5491,347,1,37216,19898,1658,14,128435,72063,7395,119,449142,261436, %U A135331 31527,794,1,1588228,951258,130353,4583,18 %N A135331 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k DUUU's starting at level 1. %C A135331 The formula for T(n,k)=l_{n,k} in the reference (p. 2919) does not appear to work (a typo is possible). - _Emeric Deutsch_, Dec 14 2007 %C A135331 Row 0 has 1 term; row n (n>=1) has floor((n+2)/3) terms. Row sums are the Catalan numbers (A000108). Column 0 yields A135337. - _Emeric Deutsch_, Dec 14 2007 %H A135331 A. Sapounakis, I. Tasoulas and P. Tsikouras, <a href="http://dx.doi.org/10.1016/j.disc.2007.03.005">Counting strings in Dyck paths</a>, Discrete Math., 307 (2007), 2909-2924. %F A135331 G.f.: G(t,z)=1+zC^2/[1+(1-t)z^3*C^4], where C=[1-sqrt(1-4z)]/(2z) is the g.f. of the Catalan numbers (A000108). - _Emeric Deutsch_, Dec 14 2007 %e A135331 Triangle begins: %e A135331 1 %e A135331 1 %e A135331 2 %e A135331 5 %e A135331 13 1 %e A135331 36 6 %e A135331 105 27 %e A135331 320 108 1 %e A135331 1011 409 10 %e A135331 3289 1508 65 %e A135331 10957 5491 347 1 %e A135331 ... %e A135331 T(5,1)=6 because we have U(DUUU)UDDDD, U(DUUU)DUDDD, U(DUUU)DDUDD, U(DUUU)DDDUD, UDU(DUUU)DDD and UUD(DUUU)DDD (the DUUU's starting at level 1 are shown between parentheses). %p A135331 G:=1+z*C^2/(1+(1-t)*z^3*C^4): C:=((1-sqrt(1-4*z))*1/2)/z: Gser:=simplify(series(G,z=0,16)): for n from 0 to 14 do P[n]:=sort(coeff(Gser,z,n)) end do: 1; for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..floor((n-1)*1/3)) end do; # yields sequence in triangular form; _Emeric Deutsch_, Dec 14 2007 %Y A135331 Cf. A000108, A135337. %K A135331 nonn,tabf %O A135331 0,3 %A A135331 _N. J. A. Sloane_, Dec 07 2007 %E A135331 More terms from _Emeric Deutsch_, Dec 14 2007