cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135348 Total sum of squares of number of distinct parts in all partitions of n.

This page as a plain text file.
%I A135348 #16 Mar 12 2023 09:41:59
%S A135348 1,2,6,11,22,37,64,101,161,243,367,535,778,1103,1558,2160,2981,4056,
%T A135348 5493,7355,9804,12948,17026,22217,28872,37276,47942,61314,78134,99081,
%U A135348 125223,157577,197672,247011,307765,382130,473171,584056,719089,882796
%N A135348 Total sum of squares of number of distinct parts in all partitions of n.
%F A135348 G.f.: x*(1+x^2)/((1-x)*(1-x^2)*Product_{m>0} (1-x^m)). Euler transform of 2,3,1,0,1,1,1,1,1,... .
%F A135348 a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (2*Pi^2). - _Vaclav Kotesovec_, May 29 2018
%F A135348 Convolution of 0, 1, 1, 3, 3, 5, 5, ... (A109613) by A000041. - _R. J. Mathar_, Mar 12 2023
%e A135348 a(5)=22: the partitions of 5 are 1+1+1+1+1 (1 distinct part), 1+1+1+2 (2 d.p.), 1+2+2 (2 d.p.), 1+1+3 (2 d.p.), 2+3 (2 d.p.), 1+4 (2 d.p.) and 5 (1. d.p.). The sum of the squares of the number of distinct parts is 1 +2^2 +2^2 +2^2 +2^2 +2^2 +1^2= 22. - _R. J. Mathar_, Mar 12 2023
%p A135348 A135348 := proc(n)
%p A135348     local gf,m ;
%p A135348     gf := x*(1+x^2)/(1-x)/(1-x^2) ;
%p A135348     for m from 1 to n do
%p A135348         gf := taylor(gf/(1-x^m),x=0,n+1)
%p A135348     od:
%p A135348     coeftayl(gf,x=0,n) ;
%p A135348 end:
%p A135348 seq(A135348(n),n=1..80) ; # _R. J. Mathar_, Feb 19 2008
%t A135348 nmax = 50; Rest[CoefficientList[Series[x*(1 + x^2)/((1 - x)*(1 - x^2)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, May 29 2018 *)
%o A135348 (PARI) A135348(N,x='x)=Vec((1+x^2)/prod(m=1,N-1,1-x^m,(1-x+O(x^N))*(1-x^2))) \\ _M. F. Hasler_, May 13 2018
%Y A135348 Cf. A000070, A000097, A093695.
%K A135348 easy,nonn
%O A135348 1,2
%A A135348 _Vladeta Jovovic_, Feb 16 2008
%E A135348 More terms from _R. J. Mathar_, Feb 19 2008