This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135352 #31 Jan 26 2024 15:14:51 %S A135352 1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1, %T A135352 3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2, %U A135352 1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3,1,2,2,1,3 %N A135352 Period 5: repeat [1,2,2,1,3]. %C A135352 This sequence (if extended to be bi-infinite) is the quiddity sequence of the unique width-5 Coxeter frieze pattern A139434; equivalently, if one goes around the (uniquely) triangulated regular pentagon and sequentially looks at its vertices, counting the number of triangles incident with each vertex, then this sequence will be obtained. - _Andrey Zabolotskiy_, May 04 2023 %H A135352 G. C. Greubel, <a href="/A135352/b135352.txt">Table of n, a(n) for n = 1..1000</a> %H A135352 Karin Baur, <a href="https://doi.org/10.1007/s00283-021-10065-x">Frieze Patterns of Integers</a>, Math. Intelligencer 43, 47-54 (2021). See Example 2 and Figure 4. %H A135352 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1). %Y A135352 Cf. A076839, A139434. %K A135352 nonn,easy %O A135352 1,2 %A A135352 _Roger L. Bagula_, Feb 16 2008 %E A135352 Edited by _Joerg Arndt_, Oct 11 2016 %E A135352 Initial term 1 removed by _Joerg Arndt_, May 04 2023