This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135354 #16 Jul 22 2024 15:25:28 %S A135354 1,1,2,3,8,15,16,315,128,2835,256,155925,1024,6081075,2048,638512875, %T A135354 32768,10854718875,65536,1856156927625,262144,194896477400625,524288, %U A135354 49308808782358125,4194304,3698160658676859375,8388608,1298054391195577640625,33554432,263505041412702261046875,67108864 %N A135354 a(0)=1, a(n) = largest divisor of n! that is coprime to a(n-1). %H A135354 Robert Israel, <a href="/A135354/b135354.txt">Table of n, a(n) for n = 0..504</a> %F A135354 a(2n) = the largest power of 2 that divides (2n)!. a(2n+1) = the largest odd divisor of (2n+1)! = (2n+1)!/a(2n). %p A135354 f:= proc(n,a) %p A135354 local P,R,i; %p A135354 P:= select(t -> isprime(t) and igcd(t,a)=1, [2,seq(i,i=3..n,2)]); %p A135354 R:= map(proc(p) local k; add(floor(n/p^k), k=1 ..ilog[p](n)) end proc, P); %p A135354 mul(P[i]^R[i],i=1..nops(P)); %p A135354 end proc: %p A135354 R:= 1: r:= 1: for i from 1 to 50 do r:= f(i,r); R:= R,r od: %p A135354 R; # _Robert Israel_, Jul 21 2024 %t A135354 a = {1}; For[n = 1, n < 25, n++, AppendTo[a, Select[Divisors[n! ], GCD[a[[ -1]], # ] == 1 &][[ -1]]]]; a (* _Stefan Steinerberger_, Dec 10 2007 *) %t A135354 ldnf[{n_,a_}]:={n+1,Max[Select[Divisors[(n+1)!],CoprimeQ[#,a]&]]}; Transpose[ NestList[ldnf,{0,1},30]][[2]] (* _Harvey P. Dale_, Jan 21 2016 *) %Y A135354 Cf. A060818, A049606. %K A135354 nonn,look %O A135354 0,3 %A A135354 _Leroy Quet_, Dec 07 2007 %E A135354 More terms from _Stefan Steinerberger_, Dec 10 2007 %E A135354 More terms from _Robert Israel_, Jul 21 2024