This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135416 #26 Jul 06 2022 19:37:35 %S A135416 1,0,2,0,0,0,4,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0, %T A135416 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0, %U A135416 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A135416 a(n) = A036987(n)*(n+1)/2. %C A135416 Guy Steele defines a family of 36 integer sequences, denoted here by GS(i,j) for 1 <= i, j <= 6, as follows. a[1]=1; a[2n] = i-th term of {0,1,a[n],a[n]+1,2a[n],2a[n]+1}; a[2n+1] = j-th term of {0,1,a[n],a[n]+1,2a[n],2a[n]+1}. The present sequence is GS(1,5). %C A135416 The full list of 36 sequences: %C A135416 GS(1,1) = A000007 %C A135416 GS(1,2) = A000035 %C A135416 GS(1,3) = A036987 %C A135416 GS(1,4) = A007814 %C A135416 GS(1,5) = A135416 (the present sequence) %C A135416 GS(1,6) = A135481 %C A135416 GS(2,1) = A135528 %C A135416 GS(2,2) = A000012 %C A135416 GS(2,3) = A000012 %C A135416 GS(2,4) = A091090 %C A135416 GS(2,5) = A135517 %C A135416 GS(2,6) = A135521 %C A135416 GS(3,1) = A036987 %C A135416 GS(3,2) = A000012 %C A135416 GS(3,3) = A000012 %C A135416 GS(3,4) = A000120 %C A135416 GS(3,5) = A048896 %C A135416 GS(3,6) = A038573 %C A135416 GS(4,1) = A135523 %C A135416 GS(4,2) = A001511 %C A135416 GS(4,3) = A008687 %C A135416 GS(4,4) = A070939 %C A135416 GS(4,5) = A135529 %C A135416 GS(4,6) = A135533 %C A135416 GS(5,1) = A048298 %C A135416 GS(5,2) = A006519 %C A135416 GS(5,3) = A080100 %C A135416 GS(5,4) = A087808 %C A135416 GS(5,5) = A053644 %C A135416 GS(5,6) = A000027 %C A135416 GS(6,1) = A135534 %C A135416 GS(6,2) = A038712 %C A135416 GS(6,3) = A135540 %C A135416 GS(6,4) = A135542 %C A135416 GS(6,5) = A054429 %C A135416 GS(6,6) = A003817 %C A135416 (with a(0)=1): Moebius transform of A038712. %H A135416 Antti Karttunen, <a href="/A135416/b135416.txt">Table of n, a(n) for n = 1..65537</a> %H A135416 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A135416 G.f.: sum{k>=1, 2^(k-1)*x^(2^k-1) }. %F A135416 Recurrence: a(2n+1) = 2a(n), a(2n) = 0, starting a(1) = 1. %p A135416 GS:=proc(i,j,M) local a,n; a:=array(1..2*M+1); a[1]:=1; %p A135416 for n from 1 to M do %p A135416 a[2*n] :=[0,1,a[n],a[n]+1,2*a[n],2*a[n]+1][i]; %p A135416 a[2*n+1]:=[0,1,a[n],a[n]+1,2*a[n],2*a[n]+1][j]; %p A135416 od: a:=convert(a,list); RETURN(a); end; %p A135416 GS(1,5,200): %t A135416 i = 1; j = 5; Clear[a]; a[1] = 1; a[n_?EvenQ] := a[n] = {0, 1, a[n/2], a[n/2]+1, 2*a[n/2], 2*a[n/2]+1}[[i]]; a[n_?OddQ] := a[n] = {0, 1, a[(n-1)/2], a[(n-1)/2]+1, 2*a[(n-1)/2], 2*a[(n-1)/2]+1}[[j]]; Array[a, 105] (* _Jean-François Alcover_, Sep 12 2013 *) %o A135416 (PARI) %o A135416 A048298(n) = if(!n,0,if(!bitand(n,n-1),n,0)); %o A135416 A135416(n) = (A048298(n+1)/2); \\ _Antti Karttunen_, Jul 22 2018 %o A135416 (Python) %o A135416 def A135416(n): return int(not(n&(n+1)))*(n+1)>>1 # _Chai Wah Wu_, Jul 06 2022 %Y A135416 Equals A048298(n+1)/2. Cf. A036987, A182660. %K A135416 nonn %O A135416 1,3 %A A135416 _N. J. A. Sloane_, based on a message from Guy Steele and _Don Knuth_, Mar 01 2008 %E A135416 Formulae and comments by _Ralf Stephan_, Jun 20 2014