cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135451 Triangular function from the characteristic polynomials of the inverse Hilbert matrices.

This page as a plain text file.
%I A135451 #13 Feb 16 2025 08:33:07
%S A135451 1,1,-1,12,-16,1,2160,-3312,381,-1,6048000,-10137600,1603680,-10496,1,
%T A135451 266716800000,-476703360000,92708406000,-1022881200,307505,-1,
%U A135451 186313420339200000,-349935855575040000,78981336366912000,-1242627237734400,750409713900,-9316560,1
%N A135451 Triangular function from the characteristic polynomials of the inverse Hilbert matrices.
%C A135451 Triangle read by rows: for 0 <= k <= n, T(n,k) is the coefficient of lambda^k in det(H^(-1) - lambda I) where H is the n x n Hilbert matrix.
%C A135451 Row sums are: 1, 0, -3, -772, -2496415, -118300727696, -85882975706265059, -972835586209103886374316, -173520203650301344466515679407359, -489847775570499454780372858733881836257416, -21954569246037949585920541114453120558720536422853379
%H A135451 Robert Israel, <a href="/A135451/b135451.txt">Table of n, a(n) for n = 0..902</a>  (rows 0 to 41, flattened)
%H A135451 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HilbertMatrix.html">Hilbert matrix</a>
%F A135451 t(n,m)=CoefficientList[CharacteristicPolynomial[Inverse[HilbertMatrix[n]], x], x]
%e A135451 {1},
%e A135451 {1, -1},
%e A135451 {12, -16, 1},
%e A135451 {2160, -3312, 381, -1},
%e A135451 {6048000, -10137600, 1603680, -10496, 1},
%e A135451 {266716800000, -476703360000, 92708406000, -1022881200, 307505, -1},
%e A135451 {186313420339200000, -349935855575040000, 78981336366912000, -1242627237734400, 750409713900, -9316560, 1}
%p A135451 f:= proc(n) uses LinearAlgebra;
%p A135451 local lambda, P,j;
%p A135451 P:= CharacteristicPolynomial(HilbertMatrix(n),lambda)/Determinant(HilbertMatrix(n));
%p A135451 seq(coeff(P,lambda,n-j),j=0..n);
%p A135451 end proc:
%p A135451 seq(f(n),n=0..10); # _Robert Israel_, Oct 05 2016
%t A135451 << LinearAlgebra`MatrixManipulation`; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[Inverse[HilbertMatrix[n]], x], x], {n, 1, 10}]]; Flatten[a]
%Y A135451 Cf. A005249.
%K A135451 tabl,sign
%O A135451 0,4
%A A135451 _Roger L. Bagula_, Dec 14 2007
%E A135451 Edited by _Robert Israel_, Oct 05 2016