This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135510 #39 Aug 03 2023 08:36:02 %S A135510 2,3,4,6,6,14,20,28,38,54,90,150,216,350,506,876,1230,2034,3160,4470, %T A135510 7764,12190,18816,29952,43800,73968,112602,182210,285780,474558, %U A135510 729432,1194078,1843110,2990880,4662450,7608720,11801580,18489120,29790300 %N A135510 Least positive number missing from row n of Stern's diatomic array (see A049456 or A002487). %C A135510 The old definition was "Least numbers not generated by Eisenstein's algorithm: m=1 n=1, then insert between them m+n, at stage p=1. (E.g. next stage (p=2) of Eisenstein's algorithm would be m, m+m+n, m+n, m+n+n, n). The maximum of these symmetric row elements at stage p is fibonacci(p+2); but how to determine the first number not generated at stage p?" %H A135510 Don Reble, <a href="/A293160/a293160.txt">C++ program for A135510 and A293160</a> %H A135510 G. Eisenstein, <a href="https://doi.org/10.1515/crll.1850.39.351">Über ein einfaches Mittel zur Auffindung der höheren Reciprocitätsgesetze und der mit ihnen zu verbindenden Ergänzungssätze</a>, Journal für die reine und angewandte Mathematik, Volume 39 (1850), page 351ff. %H A135510 M. A. Stern, <a href="http://dx.doi.org/10.1515/crll.1858.55.193">Über eine zahlentheoretische Funktion</a>, J. Reine Angew. Math., 55 (1858), 193-220. %p A135510 A049456 := proc(n, k) %p A135510 option remember; %p A135510 if n =1 then %p A135510 if k >= 0 and k <=1 then %p A135510 1; %p A135510 else %p A135510 0 ; %p A135510 end if; %p A135510 elif type(k, 'even') then %p A135510 procname(n-1, k/2) ; %p A135510 else %p A135510 procname(n-1, (k+1)/2)+procname(n-1, (k-1)/2) ; %p A135510 end if; %p A135510 end proc: # _R. J. Mathar_, Dec 12 2014 %p A135510 mex := proc(L) %p A135510 local k; %p A135510 for k from 1 do %p A135510 if not k in L then %p A135510 return k; %p A135510 end if; %p A135510 end do: %p A135510 end proc: %p A135510 rho:=n->[seq(A049456(n,k),k=0..2^(n-1))]; %p A135510 [seq(mex(rho(n)),n=1..16)]; # _N. J. A. Sloane_, Oct 14 2017 %t A135510 (* T is A049456 *) %t A135510 T[n_, k_] := T[n, k] = If[n == 1, If[k >= 0 && k <= 1, 1, 0], If[EvenQ[k], T[n-1, k/2], T[n-1, (k+1)/2] + T[n-1, (k-1)/2]]]; %t A135510 mex[L_] := Module[{k}, For[k = 1, True, k++, If[FreeQ[L, k], Return[k]]]]; %t A135510 rho[n_] := Table[T[n, k], {k, 0, 2^(n-1)}]; %t A135510 a[n_] := a[n] = mex[rho[n]]; %t A135510 Table[Print[n, " ", a[n]]; a[n], {n, 1, 25}] (* _Jean-François Alcover_, Aug 03 2023, after Maple code *) %Y A135510 Cf. A049456, A002487, A293160. %K A135510 nonn %O A135510 1,1 %A A135510 mc (da-da(AT)lycos.de), Feb 09 2008 %E A135510 Entry revised by _N. J. A. Sloane_, Oct 14 2017 %E A135510 a(29)-a(39) from _Don Reble_, Oct 16 2016