This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135521 #19 Dec 18 2019 21:52:07 %S A135521 1,1,3,1,3,1,7,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3, %T A135521 1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,63,1,3, %U A135521 1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,63,1,3,1,7,1 %N A135521 a(n) = 2^(A091090(n)) - 1. %H A135521 Antti Karttunen, <a href="/A135521/b135521.txt">Table of n, a(n) for n = 1..65537</a> %F A135521 G.f. A(x) satisfies: A(x) = x/(1 - x) + 2*x*A(x^2). - _Ilya Gutkovskiy_, Dec 18 2019 %e A135521 From _Omar E. Pol_, Mar 11 2011: (Start) %e A135521 Can be written as a triangle with 2^k entries on each row: %e A135521 1, %e A135521 1,3, %e A135521 1,3,1,7, %e A135521 1,3,1,7,1,3,1,15, %e A135521 1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31, %e A135521 1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3,1,7,1,3,1,15,1,3, 1,7,1,3,1,63, %e A135521 Last term of rows are 2^(k+1) - 1. It appears that the row sums give A001787. %e A135521 (End) %p A135521 GS(2,6,200); [see A135416]. %p A135521 # Input n is the number of rows. %p A135521 A135521_list := proc(n) local i,k,NimSum; %p A135521 NimSum := proc(a,b) option remember; local i; %p A135521 zip((x,y)->`if`(x<>y,1,0),convert(a,base,2),convert(b,base,2),0); %p A135521 add(`if`(%[i]=1,2^(i-1),0),i=1..nops(%)) end: %p A135521 seq(seq(NimSum(i,i+1),i=0..2^k-1),k=0..n) end: %p A135521 A135521_list(5); # _Peter Luschny_, May 31 2011 %t A135521 Flatten[Table[BitXor[i, i + 1], {k, 0, 10}, {i, 0, -1 + 2^k}]] (* _Peter Luschny_, May 31 2011 *) %o A135521 (PARI) %o A135521 A091090(n) = { my(m=valuation(n+1, 2)); if(n>>m, m+1, max(m, 1)); }; \\ From A091090 %o A135521 A135521(n) = ((2^A091090(n))-1); \\ _Antti Karttunen_, Sep 27 2018 %Y A135521 Cf. A135416, A091090. %Y A135521 This is Guy Steele's sequence GS(2, 6) (see A135416). %Y A135521 Cf. A000225, A001787. - _Omar E. Pol_, Mar 11 2011 %K A135521 nonn,tabf %O A135521 1,3 %A A135521 _N. J. A. Sloane_, based on a message from Guy Steele and _Don Knuth_, Mar 01 2008