This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135539 #35 Jan 08 2024 01:36:51 %S A135539 1,2,1,2,1,1,3,2,1,1,2,1,1,1,1,4,3,2,1,1,1,2,1,1,1,1,1,1,4,3,2,2,1,1, %T A135539 1,1,3,2,2,1,1,1,1,1,1,4,3,2,2,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,6,5, %U A135539 4,3,2,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1 %N A135539 Triangle read by rows: T(n,k) = number of divisors of n that are >= k. %C A135539 Row sums give A000203. %C A135539 Left border is A000005. %H A135539 Seiichi Manyama, <a href="/A135539/b135539.txt">Rows n = 1..140, flattened</a> %F A135539 Triangle read by rows, partial sums of A051731 starting from the right. A051731 as a lower triangular matrix times an all 1's lower triangular matrix. %F A135539 From _Seiichi Manyama_, Jan 07 2023: (Start) %F A135539 G.f. of column k: Sum_{j>=1} x^(k*j)/(1 - x^j). %F A135539 G.f. of column k: Sum_{j>=k} x^j/(1 - x^j). (End) %F A135539 Sum_{j=1..n} T(j, k) ~ n * (log(n) + 2*gamma - 1 - H(k-1)), where gamma is Euler's constant (A001620), and H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - _Amiram Eldar_, Jan 08 2024 %e A135539 First few rows of the triangle: %e A135539 1; %e A135539 2, 1; %e A135539 2, 1, 1; %e A135539 3, 2, 1, 1; %e A135539 2, 1, 1, 1, 1; %e A135539 4, 3, 2, 1, 1, 1; %e A135539 2, 1, 1, 1, 1, 1, 1; %e A135539 4, 3, 2, 2, 1, 1, 1, 1; %e A135539 3, 2, 2, 1, 1, 1, 1, 1, 1; %e A135539 4, 3, 2, 2, 2, 1, 1, 1, 1, 1; %e A135539 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A135539 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1; %e A135539 ... %p A135539 with(numtheory); %p A135539 f1:=proc(n) local d,s1,t1,t2,i; %p A135539 d:=tau(n); %p A135539 s1:=sort(divisors(n)); %p A135539 t1:=Array(1..n,0); %p A135539 for i from 1 to d do t1[n-s1[i]+1]:=1; od: %p A135539 t2:=PSUM(convert(t1,list)); %p A135539 [seq(t2[n+1-i],i=1..n)]; %p A135539 end proc; %p A135539 for n from 1 to 15 do lprint(f1(n)); od: # _N. J. A. Sloane_, Nov 09 2018 %t A135539 T[n_, k_] := DivisorSum[n, Boole[# >= k]&]; %t A135539 Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 15 2023 *) %o A135539 (PARI) row(n) = my(d=divisors(n)); vector(n, k, #select(x->(x>=k), d)); \\ _Michel Marcus_, Jul 23 2022 %Y A135539 Column k=1..10 give A000005, A032741, A023645, A321014, A338648, A338649, A338650, A338651, A338652, A338653. %Y A135539 Cf. A051731, A000203. %Y A135539 Cf. A001008, A001620, A002805. %K A135539 nonn,easy,tabl %O A135539 1,2 %A A135539 _Gary W. Adamson_, Oct 30 2007 %E A135539 Clearer definition from _N. J. A. Sloane_, Nov 09 2018