cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135573 Array T(n,m) of super ballot numbers read along ascending antidiagonals.

This page as a plain text file.
%I A135573 #39 Mar 13 2023 07:22:34
%S A135573 1,3,1,10,2,2,35,5,3,5,126,14,6,6,14,462,42,14,10,14,42,1716,132,36,
%T A135573 20,20,36,132,6435,429,99,45,35,45,99,429,24310,1430,286,110,70,70,
%U A135573 110,286,1430,92378,4862,858,286,154,126,154,286,858,4862
%N A135573 Array T(n,m) of super ballot numbers read along ascending antidiagonals.
%C A135573 First row is A000108. 2nd row is A007054. 3rd row and 4th column are essentially A007272.
%C A135573 1st column is A001700. 2nd column is essentially A000108. 3rd column is A007054.
%C A135573 Main diagonal is A000984.
%H A135573 G. C. Greubel, <a href="/A135573/b135573.txt">Table of n, a(n) for the first 50 antidiagonals</a>
%H A135573 E. Allen and I. Gheorghiciuc, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Allen/gheo.html">A Weighted Interpretation for the Super Catalan Numbers</a>, J. Int. Seq. 17 (2014) # 14.10.7, Table 1.
%H A135573 Ira M. Gessel, <a href="http://dx.doi.org/10.1016/0747-7171(92)90034-2">Super ballot numbers</a>, J. Symb. Comput. vol 14, iss 2-3 (1992) pp 179-194.
%F A135573 T(n, m) = (2*n + 1)!*(2*m)! / (n!*m!*(m + n + 1)!).
%F A135573 From _Peter Luschny_, Nov 03 2021: (Start)
%F A135573 T(n, m) = (1/(2*Pi))*Integral_{x=0..4} x^m*(4 - x)^(n + 1/2)*x^(-1/2). These are integral representations of the n-th moment of a positive function on [0, 4]. The representations are unique.
%F A135573 T(n, m) = 4^(m + n)*hypergeom([1/2 + n, 1/2 - m], [3/2 + n], 1)/((2*n + 1)*Pi).
%F A135573 For fixed n and m -> oo: T(n, m) ~ (1/(2*Pi))*4^(n + m + 1)*(Gamma(3/2 + n) / m^(3/2 + n))*(1 - (2*n + 3)^2 / (8*m)) . (End)
%F A135573 T(n, m) = (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2. - _Peter Luschny_, Nov 04 2021
%F A135573 From  _Peter Bala_, Mar 12 2023: (Start)
%F A135573 T(n,m) = 2*(2*n + 1 )/(n + m + 1) * T(n-1,m) with T(0,m) = Catalan(m), where Catalan(m) = A000108(m).
%F A135573 T(n,m) = Sum_{k = 0..n} (-1)^k*4^(n-k)*binomial(n,k)*Catalan(m+k) (easily verified using Maple's sumrecursion command). Thus T(n,m) is an integer. (End)
%e A135573 Array with rows n >= 0 and columns m >= 0 starts:
%e A135573 [n\m]  0    1    2    3    4    5    6     7     8  ...
%e A135573 -------------------------------------------------------
%e A135573 [0]    1    1    2    5   14   42  132   429  1430  ...  [A000108]
%e A135573 [1]    3    2    3    6   14   36   99   286   858  ...  [A007054]
%e A135573 [2]   10    5    6   10   20   45  110   286   780  ...  [A007272]
%e A135573 [3]   35   14   14   20   35   70  154   364   910  ...  [A348893]
%e A135573 [4]  126   42   36   45   70  126  252   546  1260  ...  [A348898]
%e A135573 [5]  462  132   99  110  154  252  462   924  1980  ...  [A348899]
%e A135573 [6] 1716  429  286  286  364  546  924  1716  3432  ...
%e A135573 ...
%e A135573 Seen as a triangle:
%e A135573 [0] 1;
%e A135573 [1] 3,    1;
%e A135573 [2] 10,   2,   2;
%e A135573 [3] 35,   5,   3,  5;
%e A135573 [4] 126,  14,  6,  6,  14;
%e A135573 [5] 462,  42,  14, 10, 14, 42;
%e A135573 [6] 1716, 132, 36, 20, 20, 36, 132;
%e A135573 [7] 6435, 429, 99, 45, 35, 45, 99,  429.
%e A135573 .
%e A135573 T(20, 100000) = 2.442634...*10^60129. Asymptotic formula: 2.442627..*10^60129.
%p A135573 T := proc(n,m) (2*n+1)!/n!*(2*m)!/m!/(m+n+1)! ; end proc:
%p A135573 for d from 0 to 12 do for c from 0 to d do printf("%d, ",T(d-c,c)) ; od: od:
%p A135573 # Alternatively, printed as rows:
%p A135573 A135573 := (n, m) -> (1/(2*Pi))*int(x^m*(4-x)^(n+1/2)*x^(-1/2), x=0..4):
%p A135573 for n from 0 to 9 do seq(A135573(n, m), m = 0..9) od; # _Peter Luschny_, Nov 03 2021
%t A135573 T[n_, m_] := (2*n+1)!/n!*(2*m)!/m!/(m+n+1)!; Table[T[n-m, m], {n, 0, 12}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 06 2014, after Maple *)
%t A135573 T[n_, m_] := 4^(m+n) Hypergeometric2F1[1/2+n, 1/2-m, 3/2+n, 1] / ((2 n + 1) Pi);
%t A135573 Table[T[n - m + 1, m], {n, 0, 9}, {m, 0, n}] // Flatten (* _Peter Luschny_, Nov 03 2021 *)
%o A135573 (Sage)
%o A135573 def T(n, m): return (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2
%o A135573 for n in range(7): print([T(n, m) for m in range(9)]) # _Peter Luschny_, Nov 04 2021
%Y A135573 Cf. A000108, A007054, A000984, A348893, A348898, A348899.
%Y A135573 Cf. A000984 (main diagonal), A001700 (column 0), A082590 (sum of antidiagonals).
%K A135573 easy,nonn,tabl
%O A135573 0,2
%A A135573 _R. J. Mathar_, Feb 23 2008