cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135576 Numbers whose binary expansion has only the digit "1" as first, central and final digit.

This page as a plain text file.
%I A135576 #30 Aug 15 2022 15:31:00
%S A135576 1,7,21,73,273,1057,4161,16513,65793,262657,1049601,4196353,16781313,
%T A135576 67117057,268451841,1073774593,4295032833,17180000257,68719738881,
%U A135576 274878431233,1099512676353,4398048608257,17592190238721
%N A135576 Numbers whose binary expansion has only the digit "1" as first, central and final digit.
%C A135576 This sequence is essentially identical to A001576.
%C A135576 a(n) is the number whose binary representation is A135577(n), (See example). - _Omar E. Pol_, Nov 18 2008
%H A135576 G. C. Greubel, <a href="/A135576/b135576.txt">Table of n, a(n) for n = 1..1000</a>
%H A135576 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8).
%F A135576 a(1)=1. If n>1 then a(n) = A001576(n-1).
%F A135576 G.f.: -x*(16*x^3-14*x^2+1) / ((x-1)*(2*x-1)*(4*x-1)). - _Colin Barker_, Sep 16 2013
%e A135576 --------------------------------------
%e A135576 n ........ a(n) ..... a(n) in base 2
%e A135576 --------------------------------------
%e A135576 1 .......... 1 ............ 1
%e A135576 2 .......... 7 ........... 111
%e A135576 3 ......... 21 .......... 10101
%e A135576 4 ......... 73 ......... 1001001
%e A135576 5 ........ 273 ........ 100010001
%e A135576 6 ....... 1057 ....... 10000100001
%e A135576 7 ....... 4161 ...... 1000001000001
%e A135576 8 ...... 16513 ..... 100000010000001
%e A135576 9 ...... 65793 .... 10000000100000001
%e A135576 10 .... 262657 ... 1000000001000000001
%t A135576 nxt[n_]:=Module[{l=Floor[IntegerLength[n,2]/2]},FromDigits[Join[{1},Table[0,{l}],{1},Table[0,{l}],{1}],2]]
%t A135576 NestList[nxt,1,25] (* _Harvey P. Dale_, Dec 29 2010 *)
%t A135576 Join[{1},LinearRecurrence[{7,-14,8},{7,21,73},30]] (* _Harvey P. Dale_, Mar 22 2015 *)
%o A135576 (PARI) a(n)=if(n--,4^n+2^n+1,1) \\ _Charles R Greathouse IV_, Dec 28 2012
%Y A135576 Cf. A001576, A135577.
%Y A135576 Subsequence of A006995.
%K A135576 nonn,base,easy
%O A135576 1,2
%A A135576 _Omar E. Pol_, Feb 24 2008