This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135576 #30 Aug 15 2022 15:31:00 %S A135576 1,7,21,73,273,1057,4161,16513,65793,262657,1049601,4196353,16781313, %T A135576 67117057,268451841,1073774593,4295032833,17180000257,68719738881, %U A135576 274878431233,1099512676353,4398048608257,17592190238721 %N A135576 Numbers whose binary expansion has only the digit "1" as first, central and final digit. %C A135576 This sequence is essentially identical to A001576. %C A135576 a(n) is the number whose binary representation is A135577(n), (See example). - _Omar E. Pol_, Nov 18 2008 %H A135576 G. C. Greubel, <a href="/A135576/b135576.txt">Table of n, a(n) for n = 1..1000</a> %H A135576 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8). %F A135576 a(1)=1. If n>1 then a(n) = A001576(n-1). %F A135576 G.f.: -x*(16*x^3-14*x^2+1) / ((x-1)*(2*x-1)*(4*x-1)). - _Colin Barker_, Sep 16 2013 %e A135576 -------------------------------------- %e A135576 n ........ a(n) ..... a(n) in base 2 %e A135576 -------------------------------------- %e A135576 1 .......... 1 ............ 1 %e A135576 2 .......... 7 ........... 111 %e A135576 3 ......... 21 .......... 10101 %e A135576 4 ......... 73 ......... 1001001 %e A135576 5 ........ 273 ........ 100010001 %e A135576 6 ....... 1057 ....... 10000100001 %e A135576 7 ....... 4161 ...... 1000001000001 %e A135576 8 ...... 16513 ..... 100000010000001 %e A135576 9 ...... 65793 .... 10000000100000001 %e A135576 10 .... 262657 ... 1000000001000000001 %t A135576 nxt[n_]:=Module[{l=Floor[IntegerLength[n,2]/2]},FromDigits[Join[{1},Table[0,{l}],{1},Table[0,{l}],{1}],2]] %t A135576 NestList[nxt,1,25] (* _Harvey P. Dale_, Dec 29 2010 *) %t A135576 Join[{1},LinearRecurrence[{7,-14,8},{7,21,73},30]] (* _Harvey P. Dale_, Mar 22 2015 *) %o A135576 (PARI) a(n)=if(n--,4^n+2^n+1,1) \\ _Charles R Greathouse IV_, Dec 28 2012 %Y A135576 Cf. A001576, A135577. %Y A135576 Subsequence of A006995. %K A135576 nonn,base,easy %O A135576 1,2 %A A135576 _Omar E. Pol_, Feb 24 2008