A135591 a(1)=1; for n > 1, a(n) is number of earlier terms equal to number of proper divisors of n.
1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 7, 0, 7, 1, 1, 1, 10, 0, 10, 0, 1, 1, 12, 2, 2, 1, 1, 0, 14, 2, 14, 0, 1, 1, 1, 0, 17, 1, 1, 2, 19, 2, 19, 0, 0, 1, 20, 0, 6, 0, 1, 0, 21, 2, 1, 2, 1, 1, 24, 0, 24, 1, 0, 1, 1, 2, 27, 0, 1, 2, 28, 0, 28, 1, 0, 0, 1, 2, 30, 0, 1, 1, 32, 0, 1, 1, 1, 2, 35, 0, 1, 0, 1, 1, 1, 0, 39
Offset: 1
Keywords
Examples
a(12)=0 because 12 has 5 proper divisors (1, 2, 3, 4 and 6) and there is no 5 in a(1), a(2), ..., a(11).
Links
- Katarzyna Matylla, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
s={1};Do[AppendTo[s,Count[s,DivisorSigma[0,n]-1]],{n,2,97}];s (* James C. McMahon, Apr 16 2025 *)
-
Maxima
max:1000; f:makelist(0,i,1,max); apr:makelist(0, i, 0, max); f[1]:1; apr[2]:1; for n:2 through max do block(f[n]:apr[divsum(n,0)], apr[f[n]+1]:apr[f[n]+1]+1);
Comments