This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135592 #27 Apr 16 2025 19:41:54 %S A135592 1,1,2,2,2,3,2,2,2,6,2,7,2,8,8,2,2,10,2,11,11,11,2,12,2,13,2,14,2,1,3, %T A135592 3,15,15,15,15,3,15,15,15,3,5,3,15,15,15,3,15,3,15,15,15,3,15,15,15, %U A135592 15,15,3,10,3,15,15,3,15,12,3,15,15,13,3,15,3,15,15,15,15,15,3,15,3,15,3,18 %N A135592 a(1)=1; for n > 1, a(n) is number of earlier terms equal to number of prime divisors of n. %C A135592 Similar to A125087, but instead of exponents, we use number of prime divisors. %H A135592 Katarzyna Matylla, <a href="/A135592/b135592.txt">Table of n, a(n) for n = 1..1000</a> %e A135592 a(12)=7 because 12 has 2 prime divisors (2 and 3) and there are 7 2's in a(1), a(2), ..., a(11). %t A135592 s={1};Do[AppendTo[s,Count[s,PrimeNu[n]]],{n,2,84}];s (* _James C. McMahon_, Apr 16 2025 *) %o A135592 (Maxima) max:1000; f:makelist(0,i,1,max); apr:makelist(0, i, 1, max); f[1]:1; apr[2]:1; print(1,1); for n:2 through max do block(f[n]:apr[length(ifactors(n))+1], apr[f[n]+1]:apr[f[n]+1]+1); %Y A135592 Cf. A001221, A125087, A135591. %K A135592 nonn %O A135592 1,3 %A A135592 _Katarzyna Matylla_, Feb 25 2008