cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135641 Convex numbers.

Original entry on oeis.org

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 124, 125, 126, 127, 128, 129, 136, 137, 138, 139, 148, 149, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 215, 216, 217
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2007

Keywords

Comments

The structure of digits represents a convex function or a convex object. In the graphic representation the points are connected by imaginary line segments from left to right.

Examples

			The number 742235 is a convex number.
  . . . . . .
  . . . . . .
  7 . . . . .
  . . . . . .
  . . . . . 5
  . 4 . . . .
  . . . . 3 .
  . . 2 2 . .
  . . . . . .
  . . . . . .
		

Crossrefs

Cf. A135642 (concave numbers), A135643 (straight line numbers), A163278 (concave-convex numbers).

Programs

  • Mathematica
    convexQ[n_] := With[{dd = IntegerDigits[n]}, AllTrue[SequencePosition[dd, {, , _}][[All, 1]], dd[[#]] + dd[[#+2]] > 2 dd[[#+1]]&]];
    Select[Range[100, 300], convexQ] (* Jean-François Alcover, Nov 01 2018 *)
  • PARI
    is(n) = my (d=digits(n), cvx=0, ccv=0, str=0); for (i=1, #d-2, my (x=d[i]+d[i+2]-2*d[i+1]); if (x>0, cvx++, x<0, ccv++, str++)); return (cvx>0 && ccv==0) \\ Rémy Sigrist, Aug 09 2017