This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135650 #13 Oct 18 2024 11:41:58 %S A135650 110,11100,111110000,1111111000000,1111111111111000000000000, %T A135650 111111111111111110000000000000000, %U A135650 1111111111111111111000000000000000000 %N A135650 Even perfect numbers written in base 2. %C A135650 The number of digits of a(n) is equal to 2*A000043(n)-1. The central digit is "1". The first digits are "1". The last digits are "0". The number of digits "1" is equal A000043(n). The number of digits "0" is equal A000043(n)-1. %C A135650 The concatenation of digits "1" of a(n) gives the n-th Mersenne prime written in binary (see A117293(n)). %C A135650 Also, the number of digits of a(n) is equal to A133033(n), the number of proper divisors of n-th even perfect number. %H A135650 Amiram Eldar, <a href="/A135650/b135650.txt">Table of n, a(n) for n = 1..12</a> %H A135650 Omar E. Pol, <a href="http://www.polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>. %e A135650 a(3) = 111110000 because the 3rd even perfect number is 496 and 496 written in base 2 is 111110000. Note that 11111 is the 3rd Mersenne prime A000668(3) = 31 written in base 2. %t A135650 Map[FromDigits[IntegerDigits[#, 2]] &, PerfectNumber[Range[8], "Even"]] (* _Amiram Eldar_, Oct 18 2024 *) %Y A135650 Cf. A000043, A000396, A000668, A090748, A117293. %Y A135650 Cf. A061645, A133033. %K A135650 base,nonn %O A135650 1,1 %A A135650 _Omar E. Pol_, Feb 21 2008, Feb 22 2008, Apr 28 2009