cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135652 Divisors of 28 (the 2nd perfect number), written in base 2.

This page as a plain text file.
%I A135652 #12 Nov 14 2020 15:52:09
%S A135652 1,10,100,111,1110,11100
%N A135652 Divisors of 28 (the 2nd perfect number), written in base 2.
%C A135652 The number of divisors of the second perfect number is equal to 2*A000043(2)=A061645(2)=6.
%H A135652 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>
%F A135652 a(n)=A018254(n), written in base 2. Also, for n=1 .. 6: If n<=(A000043(2)=3) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(2)=3 digits "1" and (n-1-A000043(2)) digits "0".
%e A135652 The structure of divisors of 28 (see A018254)
%e A135652 ----------------------------------------------------------------------
%e A135652 n ... Divisor . Formula ....... Divisor written in base 2 ............
%e A135652 ----------------------------------------------------------------------
%e A135652 1)......... 1 = 2^0 ........... 1
%e A135652 2)......... 2 = 2^1 ........... 10
%e A135652 3)......... 4 = 2^2 ........... 100 .... (The 2nd superperfect number)
%e A135652 4)......... 7 = 2^3 - 2^0 ..... 111 .... (The 2nd Mersenne prime)
%e A135652 5)........ 14 = 2^4 - 2^1 ..... 1110
%e A135652 6)........ 28 = 2^5 - 2^2 ..... 11100... (The 2nd perfect number)
%t A135652 FromDigits[IntegerDigits[#,2]]&/@Divisors[28] (* _Harvey P. Dale_, Nov 14 2020 *)
%o A135652 (PARI) apply(n->fromdigits(binary(n)), divisors(28)) \\ _Charles R Greathouse IV_, Jun 21 2017
%Y A135652 For more information see A018254 (Divisors of 28). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.
%K A135652 base,nonn,fini,full,easy,less
%O A135652 1,2
%A A135652 _Omar E. Pol_, Feb 23 2008, Mar 03 2008