This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135652 #12 Nov 14 2020 15:52:09 %S A135652 1,10,100,111,1110,11100 %N A135652 Divisors of 28 (the 2nd perfect number), written in base 2. %C A135652 The number of divisors of the second perfect number is equal to 2*A000043(2)=A061645(2)=6. %H A135652 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a> %F A135652 a(n)=A018254(n), written in base 2. Also, for n=1 .. 6: If n<=(A000043(2)=3) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(2)=3 digits "1" and (n-1-A000043(2)) digits "0". %e A135652 The structure of divisors of 28 (see A018254) %e A135652 ---------------------------------------------------------------------- %e A135652 n ... Divisor . Formula ....... Divisor written in base 2 ............ %e A135652 ---------------------------------------------------------------------- %e A135652 1)......... 1 = 2^0 ........... 1 %e A135652 2)......... 2 = 2^1 ........... 10 %e A135652 3)......... 4 = 2^2 ........... 100 .... (The 2nd superperfect number) %e A135652 4)......... 7 = 2^3 - 2^0 ..... 111 .... (The 2nd Mersenne prime) %e A135652 5)........ 14 = 2^4 - 2^1 ..... 1110 %e A135652 6)........ 28 = 2^5 - 2^2 ..... 11100... (The 2nd perfect number) %t A135652 FromDigits[IntegerDigits[#,2]]&/@Divisors[28] (* _Harvey P. Dale_, Nov 14 2020 *) %o A135652 (PARI) apply(n->fromdigits(binary(n)), divisors(28)) \\ _Charles R Greathouse IV_, Jun 21 2017 %Y A135652 For more information see A018254 (Divisors of 28). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652. %K A135652 base,nonn,fini,full,easy,less %O A135652 1,2 %A A135652 _Omar E. Pol_, Feb 23 2008, Mar 03 2008