This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135653 #12 Dec 02 2018 18:54:29 %S A135653 1,10,100,1000,10000,11111,111110,1111100,11111000,111110000 %N A135653 Divisors of 496 (the 3rd perfect number), written in base 2. %C A135653 The number of divisors of the third perfect number is equal to 2*A000043(3)=A061645(3)=10. %H A135653 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a> %F A135653 a(n)=A018487(n), written in base 2. Also, for n=1 .. 10: If n<=(A000043(3)=5) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(3)=5 digits "1" and (n-1-A000043(3)) digits "0". %e A135653 The structure of divisors of 496 (see A018487) %e A135653 ------------------------------------------------------------------------- %e A135653 n ... Divisor . Formula ....... Divisor written in base 2 ............... %e A135653 ------------------------------------------------------------------------- %e A135653 1)......... 1 = 2^0 ........... 1 %e A135653 2)......... 2 = 2^1 ........... 10 %e A135653 3)......... 4 = 2^2 ........... 100 %e A135653 4)......... 8 = 2^3 ........... 1000 %e A135653 5)........ 16 = 2^4 ........... 10000 ... (The 3rd superperfect number) %e A135653 6)........ 31 = 2^5 - 2^0 ..... 11111 ... (The 3rd Mersenne prime) %e A135653 7)........ 62 = 2^6 - 2^1 ..... 111110 %e A135653 8)....... 124 = 2^7 - 2^2 ..... 1111100 %e A135653 9)....... 248 = 2^8 - 2^3 ..... 11111000 %e A135653 10)...... 496 = 2^9 - 2^4 ..... 111110000 ... (The 3rd perfect number) %t A135653 FromDigits[IntegerDigits[#,2]]&/@Divisors[496] (* _Harvey P. Dale_, Dec 02 2018 *) %o A135653 (PARI) apply(n->fromdigits(binary(n)), divisors(496)) \\ _Charles R Greathouse IV_, Jun 21 2017 %Y A135653 For more information see A018487 (Divisors of 496). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652. %K A135653 base,nonn,fini,full,easy,less %O A135653 1,2 %A A135653 _Omar E. Pol_, Feb 23 2008, Mar 03 2008