This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135654 #10 Jan 08 2014 16:12:41 %S A135654 1,10,100,1000,10000,100000,1000000,1111111,11111110,111111100, %T A135654 1111111000,11111110000,111111100000,1111111000000 %N A135654 Divisors of 8128 (the 4th perfect number), written in base 2. %C A135654 The number of divisors of the 4th perfect number is equal to 2*A000043(4)=A061645(4)=14. %H A135654 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a> %F A135654 a(n)=A133024(n), written in base 2. Also, for n=1 .. 14: If n<=(A000043(4)=7) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(4)=7 digits "1" and (n-1-A000043(4)) digits "0". %e A135654 The structure of divisors of 8128 (see A133024) %e A135654 ------------------------------------------------------------------------- %e A135654 n ... Divisor . Formula ....... Divisor written in base 2 ............... %e A135654 ------------------------------------------------------------------------- %e A135654 1)......... 1 = 2^0 ........... 1 %e A135654 2)......... 2 = 2^1 ........... 10 %e A135654 3)......... 4 = 2^2 ........... 100 %e A135654 4)......... 8 = 2^3 ........... 1000 %e A135654 5)........ 16 = 2^4 ........... 10000 %e A135654 6)........ 32 = 2^5 ........... 100000 %e A135654 7)........ 64 = 2^6 ........... 1000000 ... (The 4th superperfect number) %e A135654 8)....... 127 = 2^7 - 2^0 ..... 1111111 ... (The 4th Mersenne prime) %e A135654 9)....... 254 = 2^8 - 2^1 ..... 11111110 %e A135654 10)...... 508 = 2^9 - 2^2 ..... 111111100 %e A135654 11)..... 1016 = 2^10- 2^3 ..... 1111111000 %e A135654 12)..... 2032 = 2^11- 2^4 ..... 11111110000 %e A135654 13)..... 4064 = 2^12- 2^5 ..... 111111100000 %e A135654 14)..... 8128 = 2^13- 2^6 ..... 1111111000000 ... (The 4th perfect number) %t A135654 FromDigits[IntegerDigits[#,2]]&/@Divisors[8128] (* _Harvey P. Dale_, Jan 08 2014 *) %Y A135654 For more information see A133024 (Divisors of 8128). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652. %K A135654 base,nonn,fini,full,easy,less %O A135654 1,2 %A A135654 _Omar E. Pol_, Feb 23 2008, Mar 03 2008