cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135654 Divisors of 8128 (the 4th perfect number), written in base 2.

This page as a plain text file.
%I A135654 #10 Jan 08 2014 16:12:41
%S A135654 1,10,100,1000,10000,100000,1000000,1111111,11111110,111111100,
%T A135654 1111111000,11111110000,111111100000,1111111000000
%N A135654 Divisors of 8128 (the 4th perfect number), written in base 2.
%C A135654 The number of divisors of the 4th perfect number is equal to 2*A000043(4)=A061645(4)=14.
%H A135654 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>
%F A135654 a(n)=A133024(n), written in base 2. Also, for n=1 .. 14: If n<=(A000043(4)=7) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(4)=7 digits "1" and (n-1-A000043(4)) digits "0".
%e A135654 The structure of divisors of 8128 (see A133024)
%e A135654 -------------------------------------------------------------------------
%e A135654 n ... Divisor . Formula ....... Divisor written in base 2 ...............
%e A135654 -------------------------------------------------------------------------
%e A135654 1)......... 1 = 2^0 ........... 1
%e A135654 2)......... 2 = 2^1 ........... 10
%e A135654 3)......... 4 = 2^2 ........... 100
%e A135654 4)......... 8 = 2^3 ........... 1000
%e A135654 5)........ 16 = 2^4 ........... 10000
%e A135654 6)........ 32 = 2^5 ........... 100000
%e A135654 7)........ 64 = 2^6 ........... 1000000 ... (The 4th superperfect number)
%e A135654 8)....... 127 = 2^7 - 2^0 ..... 1111111 ... (The 4th Mersenne prime)
%e A135654 9)....... 254 = 2^8 - 2^1 ..... 11111110
%e A135654 10)...... 508 = 2^9 - 2^2 ..... 111111100
%e A135654 11)..... 1016 = 2^10- 2^3 ..... 1111111000
%e A135654 12)..... 2032 = 2^11- 2^4 ..... 11111110000
%e A135654 13)..... 4064 = 2^12- 2^5 ..... 111111100000
%e A135654 14)..... 8128 = 2^13- 2^6 ..... 1111111000000 ... (The 4th perfect number)
%t A135654 FromDigits[IntegerDigits[#,2]]&/@Divisors[8128] (* _Harvey P. Dale_, Jan 08 2014 *)
%Y A135654 For more information see A133024 (Divisors of 8128). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.
%K A135654 base,nonn,fini,full,easy,less
%O A135654 1,2
%A A135654 _Omar E. Pol_, Feb 23 2008, Mar 03 2008