cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135656 Perfect numbers divided by 2, written in base 2.

Original entry on oeis.org

11, 1110, 11111000, 111111100000, 111111111111100000000000, 11111111111111111000000000000000, 111111111111111111100000000000000000, 111111111111111111111111111111100000000000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Feb 28 2008

Keywords

Comments

The number of divisors of a(n) is equal to the number of its digits. This number is equal to 2*A000043(n)-2. The number of divisors of a(n) that are powers of 2 is equal to the number of divisors that are multiples of n-th Mersenne prime A000668(n) and this number of divisors is equal to A090748(n). The first digits of a(n) are "1". For n>1 the last digits are "0". The number of digits "1" is equal to A000043(n). The number of digits "0" is equal to A000043(n)-2. The concatenation of digits "1" gives the n-th Mersenne prime written in binary (see A117293(n)). The structure of divisors of a(n) represent a triangle (see example).

Examples

			a(4)=111111100000 because the 4th. perfect number is 8128 and 8128/2=4064 and 4064 written in base 2 is 111111100000. Note that 1111111 is the 4th. Mersenne prime A000668(4)=127, written in base 2.
The structure of divisors of a(4)=111111100000
		

Crossrefs

Perfect numbers divided by 2: A133028. Cf. A000396, A000668, A019279, A090748, A117293, A135650.

Formula

a(n)=A133028(n) written in base 2.