cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135685 Triangular sequence of the coefficients of the numerator of the rational recursive sequence for tan(n*y) with x = tan(y).

This page as a plain text file.
%I A135685 #41 Nov 27 2021 05:17:28
%S A135685 0,0,1,0,-2,0,-3,0,1,0,4,0,-4,0,5,0,-10,0,1,0,-6,0,20,0,-6,0,-7,0,35,
%T A135685 0,-21,0,1,0,8,0,-56,0,56,0,-8,0,9,0,-84,0,126,0,-36,0,1,0,-10,0,120,
%U A135685 0,-252,0,120,0,-10,0,-11,0,165,0,-462,0,330,0,-55,0,1
%N A135685 Triangular sequence of the coefficients of the numerator of the rational recursive sequence for tan(n*y) with x = tan(y).
%C A135685 Signed version of A034867 with interlaced zeros. - _Joerg Arndt_, Sep 14 2014
%C A135685 The negatives of these terms gives the coefficients for the numerators for when n is negative (i.e. tan(-n*y) = -tan(n*y)). - _James Burling_, Sep 14 2014
%H A135685 Robert Israel, <a href="/A135685/b135685.txt">Table of n, a(n) for n = 0..10082</a>
%H A135685 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Kimberling/kimberling56.html">Polynomials associated with reciprocation</a>, JIS 12 (2009) 09.3.4, section 5.
%F A135685 p(n, x) = (p(n-1, x) + x)/(1 - x*p(n-1, x)), with p(0, x) = 0, p(1, x) = x.
%F A135685 Sum_{j} T(n,j)*x^j = g(n,x) where g(0,x) = 0, g(1,x) = x, g(n,x) = -2*(-1)^n*g(n-1,x) + (x^2+1)*g(n-2,x). - _Robert Israel_, Sep 14 2014
%e A135685 Triangle starts:
%e A135685   0;
%e A135685   0,   1;
%e A135685   0,  -2;
%e A135685   0,  -3,  0,   1;
%e A135685   0,   4,  0,  -4;
%e A135685   0,   5,  0, -10,  0,    1;
%e A135685   0,  -6,  0,  20,  0,   -6;
%e A135685   0,  -7,  0,  35,  0,  -21,  0,   1;
%e A135685   0,   8,  0, -56,  0,   56,  0,  -8;
%e A135685   0,   9,  0, -84,  0,  126,  0, -36,  0,   1;
%e A135685   0, -10,  0, 120,  0, -252,  0, 120,  0, -10;
%e A135685   0, -11,  0, 165,  0, -462,  0, 330,  0, -55,  0,  1;
%p A135685 g[0]:= 0:
%p A135685 g[1]:= x;
%p A135685 for n from 2 to 20 do
%p A135685 g[n]:= expand(-2*(-1)^n*g[n-1]+(x^2+1)*g[n-2])
%p A135685 od:
%p A135685 0, seq(seq(coeff(g[n],x,j),j=0..degree(g[n])),n=1..20); # _Robert Israel_, Sep 14 2014
%t A135685 p[n_, x_]:= p[n, x]= If[n<2, n*x, (p[n-1, x] + x)/(1 - x*p[n-1, x])];
%t A135685 Table[CoefficientList[Numerator[FullSimplify[p[n, x]]], x], {n,0,12}]//Flatten
%o A135685 (Sage)
%o A135685 def p(n, x): return n*x if (n<2) else 2*(-1)^(n+1)*p(n-1,x) + (1+x^2)*p(n-2,x)
%o A135685 def A135685(n,k): return ( p(n,x) ).series(x,n+1).list()[k]
%o A135685 flatten([[A135685(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Nov 26 2021
%Y A135685 Cf. A095704, A162590.
%K A135685 tabf,sign
%O A135685 0,5
%A A135685 _Roger L. Bagula_, Feb 17 2008
%E A135685 Prepended first term and offset corrected by _James Burling_, Sep 14 2014