cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135737 Ulam type (1-additive) sequences u[1]=2, u[2]=2n+1, u[k+1] is least unique sum u[i]+u[j]>u[k], 1<=i

Original entry on oeis.org

2, 3, 2, 5, 5, 2, 7, 7, 7, 2, 8, 9, 9, 9, 2, 9, 11, 11, 11, 11, 2, 13, 12, 13, 13, 13, 13, 2, 14, 13, 15, 15, 15, 15, 15, 2, 18, 15, 16, 17, 17, 17, 17, 17, 2, 19, 19, 17, 19, 19, 19, 19, 19, 19, 2, 24, 23, 19, 20, 21, 21, 21, 21, 21, 21, 2, 25, 27, 21, 21, 23, 23, 23, 23, 23, 23, 23
Offset: 1

Views

Author

M. F. Hasler, Nov 26 2007

Keywords

Comments

Any of the sequences u=U(2,2n+1) has u[1]=2 and u[n+4]=4n+4; in between these there are the odd numbers 2n+1,...,4n-3. For n>1 there are no other even terms and the sequence of first differences becomes periodic for k>=t (transient phase), such that u[k] = u[k-floor((k-t)/p)*p] + floor((k-t)/p)*d, where p is the period (cf. A100729) and d the fundamental difference (cf. A100730). See the cross-references, especially A002858, for more information.

Examples

			The sequence contains the terms of the table T[n,k] = U(2,2n+1)[k], read by antidiagonals: a[1]=T[1,1]=2, a[2]=T[1,2]=3, a[3]=T[2,1]=2, a[4]=T[1,3]=5,...
n=1: U(2,3)= 2, 3, 5, 7, 8, 9,13,14...
n=2: U(2,5)= 2, 5, 7, 9,11,12,...
n=3: U(2,7)= 2, 7, 9,11,13,...
n=4: U(2,9)= 2, 9,11,...
		

Crossrefs

Cf. A001857 = U(2, 3) = row 1, A007300 = U(2, 5) = row 2, A003668 = U(2, 7) = row 3; A100729-A100730 (period).
Cf. A002858 = U(1, 2): this would be row 0, with u[1], u[2] exchanged.
See also: A002859 = U(1, 3), A003666 = U(1, 4), A003667 = U(1, 5).

Programs

  • PARI
    ulam(a,b,Nmax=30,i)=a=[a,b]; b=[a[1]+b]; for( k=3,Nmax, i=1; while(( i<#b && b[i]==b[i+1] && i+=2 ) || ( i>1 && b[i]==b[i-1] && i++),); a=concat(a,b[i]); b=vecsort(concat(vecextract(b,Str("^..",i)),vector(k-1,j,a[k]+a[j]))); i=0; for(j=1,#b-2, if( b[j]==b[j+2], i+=1<A135737(Nmax=100)=local(T=vector(sqrtint(Nmax*2)+1,n, ulam(2,2*n+1, sqrtint(Nmax*2)+2-n)),i,j); vector(Nmax,k,if(j>1,T[i++ ][j-- ],j=i+1;T[i=1][j]))