This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135742 #9 Nov 05 2016 12:51:07 %S A135742 1,1,1,4,19,131,1156,12622,166825,2600677,47038456,974165336, %T A135742 22829939089,599668759483,17512623094240,564613124026876, %U A135742 19972670155565761,771019774737952313,32326390781950804048 %N A135742 E.g.f.: A(x) = Sum_{n>=0} exp( n*(n-1)/2 * x ) * x^n / n!. %H A135742 G. C. Greubel, <a href="/A135742/b135742.txt">Table of n, a(n) for n = 0..250</a> %F A135742 a(n) = Sum_{k=0..n} C(n,k) * ( k*(k-1)/2 )^(n-k). %F A135742 O.g.f.: Sum_{n>=0} x^n / (1 - n*(n-1)/2 * x)^(n+1). - _Paul D. Hanna_, Jul 30 2014 %t A135742 Flatten[{1, Table[Sum[Binomial[n, k]*Binomial[k, 2]^(n - k), {k, 0, n}], {n,1, 25}]}] (* _G. C. Greubel_, Nov 05 2016 *) %o A135742 (PARI) {a(n)=sum(k=0,n,binomial(n,k)*(k*(k-1)/2)^(n-k))} %o A135742 for(n=0,25,print1(a(n),", ")) %o A135742 (PARI) {a(n)=n!*polcoeff(sum(k=0,n,exp(k*(k-1)/2*x +x*O(x^n))*x^k/k!),n)} %o A135742 for(n=0,25,print1(a(n),", ")) %o A135742 (PARI) /* From Sum_{n>=0} x^n/(1 - n*(n-1)/2*x)^(n+1): */ %o A135742 {a(n)=polcoeff(sum(k=0, n, x^k/(1-k*(k-1)/2*x +x*O(x^n))^(k+1)), n)} %o A135742 for(n=0,25,print1(a(n),", ")) %Y A135742 Cf. variants: A135743, A135744, A135745, A135746. %K A135742 nonn %O A135742 0,4 %A A135742 _Paul D. Hanna_, Nov 27 2007