This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135747 #9 Nov 05 2016 15:03:55 %S A135747 1,0,2,9,88,985,14976,278929,6208000,163268865,4979147680, %T A135747 173500986241,6838921208736,302161792811905,14840867887070512, %U A135747 804732692174218305,47888731015720316416,3110871265807567331329,219546952410733092279360 %N A135747 E.g.f.: A(x) = Sum_{n>=0} exp( (n^2-1)*x ) * x^n/n!. %C A135747 n divides a(n) for n>=1. %H A135747 G. C. Greubel, <a href="/A135747/b135747.txt">Table of n, a(n) for n = 0..250</a> %F A135747 a(n) = Sum_{k=0..n} C(n,k) * (k^2-1)^(n-k). %F A135747 O.g.f.: Sum_{n>=0} x^n / (1 - (n^2-1)*x)^(n+1). - _Paul D. Hanna_, Jul 30 2014 %t A135747 Flatten[{1, Table[Sum[Binomial[n, k]*(k^2 - 1)^(n - k), {k, 0, n}], {n,1,25}]}] (* _G. C. Greubel_, Nov 05 2016 *) %o A135747 (PARI) {a(n)=sum(k=0,n,binomial(n,k)*(k^2-1)^(n-k))} %o A135747 for(n=0,25,print1(a(n),", ")) %o A135747 (PARI) {a(n)=n!*polcoeff(sum(k=0,n,exp((k^2-1)*x +x*O(x^n))*x^k/k!),n)} %o A135747 for(n=0,25,print1(a(n),", ")) %o A135747 (PARI) /* From Sum_{n>=0} x^n/(1 - (n^2-1)*x)^(n+1): */ %o A135747 {a(n)=polcoeff(sum(k=0, n, x^k/(1-(k^2-1)*x +x*O(x^n))^(k+1)), n)} %o A135747 for(n=0,25,print1(a(n),", ")) %Y A135747 Cf. variants: A135742, A135743, A135744, A135745, A135746. %K A135747 nonn %O A135747 0,3 %A A135747 _Paul D. Hanna_, Nov 27 2007