cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135759 Least Catalan number divisible by 2^n: a(n) = A000108(2^(n+1)-2).

This page as a plain text file.
%I A135759 #9 Jan 09 2017 14:28:22
%S A135759 1,2,132,2674440,3814986502092304,24139737743045626825711458546273312,
%T A135759 2861304849265668492891140780463352404986232263244287143198790516197234752
%N A135759 Least Catalan number divisible by 2^n: a(n) = A000108(2^(n+1)-2).
%C A135759 The next term has 150 digits. - _Harvey P. Dale_, Jan 09 2017
%F A135759 a(n) = C(2^(n+2)-4, 2^(n+1)-2) / (2^(n+1)-1).
%t A135759 Table[Binomial[2^(n + 2) - 4, 2^(n + 1) - 2]/(2^(n + 1) - 1), {n,0,10}] (* _G. C. Greubel_, Nov 07 2016 *)
%t A135759 Table[SelectFirst[CatalanNumber[Range[300]],Divisible[#,2^n]&],{n,0,7}] (* _Harvey P. Dale_, Jan 09 2017 *)
%o A135759 (PARI) {a(n) = binomial(2^(n+2)-4, 2^(n+1)-2) / (2^(n+1)-1)}
%o A135759 for(n=0,8,print1(a(n),", "))
%Y A135759 Cf. A038003 (odd Catalan numbers).
%K A135759 nonn
%O A135759 0,2
%A A135759 _Paul D. Hanna_, Dec 02 2007