cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135765 Distribute the odd numbers in columns based on the occurrence of "3" in each prime factorization; square array A(row, col) = 3^(row-1) * A007310(col), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

This page as a plain text file.
%I A135765 #25 Feb 03 2015 16:09:49
%S A135765 1,5,3,7,15,9,11,21,45,27,13,33,63,135,81,17,39,99,189,405,243,19,51,
%T A135765 117,297,567,1215,729,23,57,153,351,891,1701,3645,2187,25,69,171,459,
%U A135765 1053,2673,5103,10935,6561,29,75,207,513,1377,3159,8019,15309,32805
%N A135765 Distribute the odd numbers in columns based on the occurrence of "3" in each prime factorization; square array A(row, col) = 3^(row-1) * A007310(col), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
%C A135765 The Table can be constructed by multiplying sequence A000244 by A007310.
%C A135765 From _Antti Karttunen_, Jan 26 2015: (Start)
%C A135765 A permutation of odd numbers. Adding one to each term and then dividing by two gives a related table A254051, which for any odd number, located in this array as x = A(row,col), gives the result at A254051(row+1,col) after one combined Collatz step (3x+1)/2 -> x (A165355) has been applied.
%C A135765 Each odd number n occurs here in position A(A007949(n), A126760(n)).
%C A135765 Compare also to A135764.
%C A135765 (End)
%H A135765 Antti Karttunen, <a href="/A135765/b135765.txt">Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of array</a>
%H A135765 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F A135765 From _Antti Karttunen_, Jan 26 2015: (Start)
%F A135765 With both row and col starting from 1:
%F A135765 A(row, col) = A000244(row-1) * A007310(col) = 3^(row-1) * A007310(col).
%F A135765 a(n) = (2*A254051(n))-1.
%F A135765 a(n) = A003961(A254053(n)).
%F A135765 Above in array form:
%F A135765 A(row,col) = A003961(A254053(row,col)) = A003961(A135764(row,A249745(col))).
%F A135765 (End)
%e A135765 The top left corner of the array:
%e A135765     1,    5,    7,   11,   13,   17,   19,   23,   25,   29,   31,   35, ...
%e A135765     3,   15,   21,   33,   39,   51,   57,   69,   75,   87,   93,  105, ...
%e A135765     9,   45,   63,   99,  117,  153,  171,  207,  225,  261,  279,  315, ...
%e A135765    27,  135,  189,  297,  351,  459,  513,  621,  675,  783,  837,  945, ...
%e A135765    81,  405,  567,  891, 1053, 1377, 1539, 1863, 2025, 2349, 2511, 2835, ...
%e A135765   243, 1215, 1701, 2673, 3159, 4131, 4617, 5589, 6075, 7047, 7533, 8505, ...
%e A135765 etc.
%e A135765 For n = 6, we have [A002260(6), A004736(6)] = [3, 1] (that is 6 corresponds to location 3,1 (row,col) in above table) and A(3,1) = A000244(3-1) * A007310(1) = 3^2 * 1 = 9.
%e A135765 For n = 9, we have [A002260(9), A004736(9)] = [3, 2] (9 corresponds to location 3,2) and A(3,2) = A000244(3-1) * A007310(2) = 3^2 * 5 = 9*5 = 45.
%e A135765 For n = 13, we have [A002260(13), A004736(13)] = [3, 3] (13 corresponds to location 3,3) and A(3,3) = A000244(3-1) * A007310(3) = 3^2 * 7 = 9*7 = 63.
%e A135765 For n = 23, we have [A002260(23), A004736(23)] = [2, 6] (23 corresponds to location 2,6) and A(2,6) = A000244(2-1) * A007310(6) = 3^1 * 17 = 51.
%p A135765 N:= 20:
%p A135765 B:= [seq(op([6*n+1,6*n+5]),n=0..floor((N-1)/2))]:
%p A135765 [seq(seq(3^j*B[i-j],j=0..i-1),i=1..N)]; # _Robert Israel_, Jan 26 2015
%o A135765 (Scheme, two versions)
%o A135765 (define (A135765 n) (A135765bi (A002260 n) (A004736 n)))
%o A135765 (define (A135765bi row col) (* (A000244 (- row 1)) (A007310 col)))
%o A135765 (define (A135765 n) (+ -1 (* 2 (A254051 n))))
%Y A135765 Row 1: A007310.
%Y A135765 Column 1: A000244.
%Y A135765 Cf. A007949 (row index), A126760 (column index).
%Y A135765 Cf. also A000265, A002260, A003961, A004736, A005408, A165355, A249745.
%Y A135765 Related arrays: A135764, A254051, A254055, A254101, A254102.
%K A135765 easy,nonn,tabl
%O A135765 1,2
%A A135765 _Alford Arnold_, Nov 28 2007
%E A135765 Name amended and examples edited by _Antti Karttunen_, Jan 26 2015