This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135772 #15 Jul 30 2021 08:29:45 %S A135772 1,2,3,4,8,10,14,15,16,32,44,45,50,52,63,64,128,130,135,136,138,152, %T A135772 154,165,170,174,182,184,186,189,190,195,222,230,231,232,238,246,248, %U A135772 250,255,256,441,484,512,567,592,656,688,752,848,891,944,976 %N A135772 Numbers having equal number of divisors and binary digits. %H A135772 G. C. Greubel, <a href="/A135772/b135772.txt">Table of n, a(n) for n = 1..1000</a> %e A135772 a(1) = 1 since 1 has 1 divisor and 1 binary digit. %e A135772 a(2), a(3) = 2, 3 since 2 = 10_2 and 3 = 11_2 have 2 divisors and 2 binary digits. %e A135772 a(4) = 4 = 100_2 is the only number with 3 binary digits having 3 divisors. %e A135772 8, 10, 14, 15 have 4 binary digits and 4 divisors. %t A135772 Select[Range[500], DivisorSigma[0, #] == IntegerLength[#, 2] &] (* _G. C. Greubel_, Nov 08 2016 *) %o A135772 (PARI) for(d=1,10,for(n=2^(d-1),2^d-1,d==numdiv(n)&print1(n", "))) %o A135772 (Python) %o A135772 from sympy import divisor_count %o A135772 def ok(n): return divisor_count(n) == n.bit_length() %o A135772 print(list(filter(ok, range(1, 977)))) # _Michael S. Branicky_, Jul 29 2021 %Y A135772 Cf. A000005, A070939. %Y A135772 Cf. A135773, A135774, A135775, A135776, A135777, A135778, A135779, A095862. %K A135772 base,nonn %O A135772 1,2 %A A135772 _M. F. Hasler_, Nov 28 2007