A135818 Number of 1's (or A's) in the Wythoff representation of n.
1, 0, 1, 2, 0, 3, 1, 1, 4, 2, 2, 2, 0, 5, 3, 3, 3, 1, 3, 1, 1, 6, 4, 4, 4, 2, 4, 2, 2, 4, 2, 2, 2, 0, 7, 5, 5, 5, 3, 5, 3, 3, 5, 3, 3, 3, 1, 5, 3, 3, 3, 1, 3, 1, 1, 8, 6, 6, 6, 4, 6, 4, 4, 6, 4, 4, 4, 2, 6, 4, 4, 4, 2, 4, 2, 2, 6, 4, 4, 4, 2, 4, 2, 2, 4, 2, 2, 2, 0, 9, 7, 7, 7, 5, 7, 5, 5, 7, 5, 5, 5, 3, 7, 5, 5
Offset: 1
Examples
6 = A(A(A(B(1)))) = AAAB = `1110`, hence a(6)=3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
z[n_] := Floor[(n + 1)*GoldenRatio] - n - 1; h[n_] := z[n] - z[n - 1]; w[n_] := Module[{m = n, zm = 0, hm, s = {}}, While[zm != 1, hm = h[m]; AppendTo[s, hm]; If[hm == 1, zm = z[m], zm = z[z[m]]]; m = zm]; s]; w[0] = 0; a[n_] := Total[w[n]]; Array[a, 100] (* Amiram Eldar, Jul 01 2023 *)
Comments