This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135836 #17 Jun 04 2024 12:12:55 %S A135836 3,22,82,254,677,1692,3972,9052,19975,43394,92534,195546,408489, %T A135836 848584,1749544,3594104,7345547,14976366,30424986,61706038,124829101, %U A135836 252226676,508704716,1025115156,2062984719,4149086938,8336437438,16742227730,33599246513,67406551968 %N A135836 Column three of the triangular matrix in A135835. %C A135836 Column two of the associated matrix is A005803. %H A135836 G. C. Greubel, <a href="/A135836/b135836.txt">Table of n, a(n) for n = 1..1000</a> %H A135836 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-10,15,-6). %F A135836 From _G. C. Greubel_, Feb 07 2022: (Start) %F A135836 a(n) = (1/4)*(110 + 26*n + 2^(n+8) - (1 - (-1)^n)*106*3^((n+1)/2) - (1 + (-1)^n)*61*3^(1+n/2)). %F A135836 a(2*n) = (1/2)*(55 + 26*n + 2^(2*n+7) - 61*3^(n+1)). %F A135836 a(2*n+1) = (1/2)*(68 + 26*n + 4^(n+4) - 106*3^(n+1)). %F A135836 G.f.: x*(3 + 10*x)/((1-x)^2*(1 - 2*x - 3*x^2 + 6*x^3)). %F A135836 E.g.f.: (1/2)*( (55 + 13*x)*exp(x) + 128*exp(2*x) - 183*cosh(sqrt(3)*x) - 106*sqrt(3)*sinh(sqrt(3)*x) ). (End) %t A135836 LinearRecurrence[{4,-2,-10,15,-6}, {3,22,82,254,677}, 40] (* _G. C. Greubel_, Feb 07 2022 *) %o A135836 (Magma) [(1/12)*(330 +78*n +3*2^(n+8) -(1-(-1)^n)*106*3^((n+3)/2) -(1+(-1)^n)*61*3^(2 +n/2)): n in [1..40]]; // _G. C. Greubel_, Feb 07 2022 %o A135836 (SageMath) %o A135836 def a(n): %o A135836 if (n%2==0): return (1/2)*(55 + 13*n + 2^(n+7) -61*3^(n/2+1)) %o A135836 else: return (1/2)*(55 + 13*n + 2^(n+7) - 106*3^((n+1)/2)) %o A135836 [a(n) for n in (1..40)] # _G. C. Greubel_, Feb 07 2022 %Y A135836 Cf. A005803, A135835. %K A135836 nonn,easy %O A135836 1,1 %A A135836 _John W. Layman_, Nov 30 2007 %E A135836 Terms a(14) onward added by _G. C. Greubel_, Feb 07 2022