cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135849 a(n) is the ratio of the sum of the bends (curvatures) of the circles in the n-th generation of an Apollonian packing to the sum of the bends in the initial four-circle configuration.

This page as a plain text file.
%I A135849 #44 Jun 29 2025 21:21:39
%S A135849 1,5,39,297,2259,17181,130671,993825,7558587,57487221,437222007,
%T A135849 3325314393,25290849123,192350849805,1462934251071,11126421459153,
%U A135849 84622568920011,643601286982629,4894942589100999,37228736851860105,283145067047577843,2153474325825042429
%N A135849 a(n) is the ratio of the sum of the bends (curvatures) of the circles in the n-th generation of an Apollonian packing to the sum of the bends in the initial four-circle configuration.
%C A135849 These ratios are independent of the starting configuration.
%C A135849 For more comments, references and links, see A189226.
%H A135849 Vincenzo Librandi, <a href="/A135849/b135849.txt">Table of n, a(n) for n = 1..200</a>
%H A135849 J. C. Lagarias, C. L. Mallows and Allan Wilks, <a href="http://www.jstor.org/stable/2695498">Beyond the Descartes Circle Theorem</a>, Amer. Math. Monthly, 109 (2002), 338-361.
%H A135849 C. L. Mallows, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Mallows/mallows8.html">Growing Apollonian Packings</a>, J. Integer Sequences, 12 (2009), article 09.2.1, page 3.
%H A135849 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-3).
%F A135849 For n >= 4, a(n) = 8*a(n-1) - 3*a(n-2).
%F A135849 For n>2, [a(n+2), a(n+3)] = the 2 X 2 matrix [0,1; -3,8]^n * [5,39]. Example: [0,1; -3,8]^3 * [5,39] = [a(5), a(6)] = [2259, 17181]. - _Gary W. Adamson_, Mar 09 2008 (typo corrected by _Jonathan Sondow_, Dec 24 2012)
%F A135849 a(n) = floor(C * A138264(n)), where C = 1.057097576... = (1/2)*((1/9) + sqrt((1/81) + 4)). Example: a(7) = 130671 = floor(C * A138264(7)) = floor(C * 123613). A135849(n)/A138264(n) tends to C. - _Gary W. Adamson_, Mar 09 2008
%F A135849 O.g.f.: 2*x/3 +7/9 +(59*x-7)/(9*(1-8*x+3*x^2)). - _R. J. Mathar_, Apr 24 2008
%F A135849 a(n) = 31*sqrt(13)*(A^n - B^n)/234 - 7*(A^n + B^n)/18 for n>1 where A=3/(4-sqrt(13)) and B=3/(4+sqrt(13)). - _R. J. Mathar_, Apr 24 2008
%e A135849 Starting with the configuration with bends (-1,2,2,3) with sum(bends) = 6, the next generation contains four circles with bends 3,6,6,15. The sum is 30 = 6*a(2). The third generation has 12 circles with sum(bends) = 234 = 6*a(3).
%t A135849 CoefficientList[Series[(2 z^2 - 3 z + 1)/(3 z^2 - 8 z + 1), {z, 0, 100}], z] (* and *) LinearRecurrence[{8, -3}, {1, 5, 39}, 100] (* _Vladimir Joseph Stephan Orlovsky_, Jul 03 2011 *)
%o A135849 (PARI) Vec((2*x^3 - 3*x^2 + x)/(3*x^2 - 8*x + 1)+O(x^99)) \\ _Charles R Greathouse IV_, Jul 03 2011
%o A135849 (Magma) I:=[1, 5, 39]; [n le 3 select I[n] else  8*Self(n-1) - 3*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Dec 25 2012
%Y A135849 Cf. A105970, A137246, A138264, A189226, A189227.
%K A135849 easy,nonn
%O A135849 1,2
%A A135849 _Colin Mallows_, Mar 06 2008