This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135853 #27 Feb 16 2022 11:04:09 %S A135853 1,4,2,6,6,3,8,12,12,4,10,20,30,20,5,12,30,60,60,30,6,14,42,105,140, %T A135853 105,42,7,16,56,168,280,280,168,56,8,18,72,252,504,630,504,252,72,9, %U A135853 20,90,360,840,1260,1260,840,360,90,10 %N A135853 A103516 * A007318 as an infinite lower triangular matrix. %H A135853 G. C. Greubel, <a href="/A135853/b135853.txt">Table of n, a(n) for the first 50 rows</a> %F A135853 T(n, k) = (A103516 * A007318)(n, k). %F A135853 Sum_{k=0..n} T(n, k) = A135854(n). %F A135853 T(n, k) = (k+1)*binomial(n+1, k+1), with T(n, n) = n+1, T(n, 0) = 2*(n+1). - _G. C. Greubel_, Dec 07 2016 %F A135853 T(n, 0) = A103517(n). - _G. C. Greubel_, Feb 06 2022 %e A135853 First few rows of the triangle are: %e A135853 1; %e A135853 4, 2; %e A135853 6, 6, 3; %e A135853 8, 12, 12, 4; %e A135853 10, 20, 30, 20, 5; %e A135853 12, 30, 60, 60, 30, 6; %e A135853 14, 42, 105, 140, 105, 42, 7; %e A135853 ... %t A135853 T[n_, k_]:= If[k==n, n+1, If[k==0, 2*(n+1), (k+1)*Binomial[n+1, k+1]]]; %t A135853 Table[T[n, k], {n,0,12}, {k,0,n}]//flatten (* _G. C. Greubel_, Dec 07 2016 *) %o A135853 (Sage) %o A135853 def A135853(n,k): %o A135853 if (n==0): return 1 %o A135853 elif (k==0): return 2*(n+1) %o A135853 else: return (k+1)*binomial(n+1, k+1) %o A135853 flatten([[A135853(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 06 2022 %Y A135853 Cf. A007318, A103516. %Y A135853 Cf. A103517 (1st column), A135854 (row sums). %Y A135853 Cf. A135852 (= A007318 * A103516). %K A135853 nonn,tabl %O A135853 0,2 %A A135853 _Gary W. Adamson_, Dec 01 2007