This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135861 #28 Oct 06 2021 14:08:46 %S A135861 1,1,5,55,969,23751,749398,28989675,1329890705,70625252863, %T A135861 4263421511271,288417894029200,21616536107173175,1778197364075525550, %U A135861 159297460456229992380,15438280311293473537331,1609484153977526457766689,179612918129148904884024975 %N A135861 a(n) = binomial(n*(n+1),n)/(n+1). %H A135861 Seiichi Manyama, <a href="/A135861/b135861.txt">Table of n, a(n) for n = 0..338</a> %H A135861 R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011. %F A135861 a(n) = A135860(n)/(n+1). %F A135861 a(n) = [x^(n^2)] 1/(1 - x)^n. - _Ilya Gutkovskiy_, Oct 10 2017 %F A135861 a(p) == 1 ( mod p^4 ) for prime p >= 5 and a(2*p) == 4*p + 1 ( mod p^4 ) for prime p >= 5 (apply Mestrovic, equation 37). - _Peter Bala_, Feb 23 2020 %F A135861 a(n) ~ exp(n + 1/2) * n^(n - 3/2) / sqrt(2*Pi). - _Vaclav Kotesovec_, Oct 17 2020 %p A135861 A135861:=n->binomial(n*(n+1),n)/(n+1); seq(A135861(n), n=0..15); # _Wesley Ivan Hurt_, May 08 2014 %t A135861 Table[Binomial[n*(n + 1), n]/(n + 1), {n, 0, 15}] %o A135861 (PARI) a(n)=binomial(n*(n+1),n)/(n+1) %Y A135861 Cf. A014068, A107863, A135860, A135862, A295763. %K A135861 nonn %O A135861 0,3 %A A135861 _Paul D. Hanna_, Dec 02 2007