A135910 Number of triples (x,y,z) of nonnegative integers such that x^2+y^3+z^4 = n.
1, 3, 3, 1, 1, 2, 1, 0, 1, 3, 3, 1, 1, 1, 0, 0, 2, 5, 3, 0, 1, 1, 0, 0, 2, 4, 3, 2, 3, 1, 0, 1, 2, 3, 1, 0, 2, 3, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 0, 2, 2, 1, 3, 2, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 3, 5, 3, 0, 2, 1, 0, 0, 1, 3, 1, 0, 1, 1, 0, 1, 3, 5, 4, 2, 1, 1, 1, 0, 1, 4, 4, 2, 2, 1, 0, 0, 1, 2, 3, 0, 2
Offset: 0
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- K. B. Ford, The representation of numbers as sums of unlike powers II, J. Amer. Math. Soc., 9 (1996), 919-940.
Programs
-
Maple
M:=10; M2:=M^2; t0:=array(0..M2); for i from 0 to M2 do t0[i]:=0; od: for a from 0 to M do for b from 0 to M do for c from 0 to M do i:=a^2+b^3+c^4; if i <= M2 then t0[i]:=t0[i]+1; fi; od: od: od: [seq(t0[i],i=0..M2)];