This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135919 #8 Jun 05 2019 09:21:21 %S A135919 4,11,34,133,566,2488,11056,49323,220373,985176,4405203,19699535, %T A135919 88096982,393978082,1761917118,7879521402,35238270419,157590299379, %U A135919 704765178272,3151805575994,14095302829230,63036110202947 %N A135919 Chromatic number of stage-n Menger sponge. %C A135919 a(n) = A000934(A135918(n)). %H A135919 C. Mackeprang & K. Myers, <a href="https://www.jstor.org/stable/27642353">Coloring Graphs on Sponges: Problem 11208</a>, Amer. Math. Monthly 114 (November 2007), p. 842. %F A135919 a(n) = floor((7 + sqrt(1 + 48*(21*20^n + 38*8^n - 59)/133))/2). %e A135919 a(0)=4 because a cube requires at most 4 colors. a(1)=11 because a cube with holes drilled through the faces meeting in the center requires at most 11 colors. %t A135919 Table[Floor[(7+Sqrt[1+48*(21*20^n+38*8^n-59)/133])/2],{n,0,30}] (* _Harvey P. Dale_, Mar 07 2012 *) %Y A135919 Cf. A000934, A135918. %K A135919 easy,nonn %O A135919 0,1 %A A135919 _Marc LeBrun_, Dec 05 2007