cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135922 Inverse binomial transform of A006116, which is the sum of Gaussian binomial coefficients [n,k] for q=2.

This page as a plain text file.
%I A135922 #100 May 07 2025 11:34:44
%S A135922 1,1,2,6,26,158,1330,15414,245578,5382862,162700898,6801417318,
%T A135922 394502066810,31849226170622,3589334331706258,566102993389615254,
%U A135922 125225331231990004138,38920655753545108286254,17021548688670112527781058,10486973328106497739526535366
%N A135922 Inverse binomial transform of A006116, which is the sum of Gaussian binomial coefficients [n,k] for q=2.
%C A135922 Let B = {v_1,v_2,...,v_n} be a basis for F_2^n.  a(n) is the number of subspaces of F_2^n that do not contain any of the vectors in B.  Moreover, for 1<=k<=n, let S be a size k subset of B. a(k) is the number of subspaces of F_2^n that do not contain any of the vectors in S but do contain all the vectors in B - S. - _Geoffrey Critzer_, May 03 2025
%C A135922 Also number of Stanley graphs on n nodes. For precise definition see Knuth (1997). - _Alois P. Heinz_, Sep 24 2019
%C A135922 Also the number of naturally labeled posets on [n] with height at most two. - _David Bevan_, Jul 28 2022; Nov 16 2023
%C A135922 Also the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple a<b<c we have X(ab)X(ac)X(bc) not in {+-+,+++}. - _Manfred Scheucher_, Jan 05 2024
%D A135922 Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 318.
%H A135922 Alois P. Heinz, <a href="/A135922/b135922.txt">Table of n, a(n) for n = 0..115</a>
%H A135922 David Bevan, Gi-Sang Cheon and Sergey Kitaev, <a href="https://arxiv.org/abs/2311.08023">On naturally labelled posets and permutations avoiding 12-34</a>, arXiv:2311.08023 [math.CO], 2023.
%H A135922 Lucas Gagnon, <a href="https://arxiv.org/abs/2012.00108">The combinatorics of normal subgroups in the unipotent upper triangular group</a>, arXiv:2012.00108 [math.CO], 2020.
%H A135922 D. E. Knuth, <a href="/A323841/a323841.pdf">Letter to Daniel Ullman and others</a>, Apr 29 1997 [Annotated scanned copy, with permission]
%H A135922 Zvi Rosen and Yan X. Zhang, <a href="https://arxiv.org/abs/1702.06907">Convex Neural Codes in Dimension 1</a>, arXiv:1702.06907 [math.CO], 2017. Mentions this sequence.
%H A135922 R. P. Stanley, <a href="https://www.jstor.org/stable/2974988">Problem 10572</a>, The American Mathematical Monthly, 104(2) (1997), 168.
%H A135922 R. P. Stanley and S. C. Locke, <a href="https://www.jstor.org/stable/2589063">Graphs without increasing paths: Solution to Problem 10572</a>, The American Mathematical Monthly, 106(2) (1999), 168.
%F A135922 O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - (2^k-1)*x).
%F A135922 G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-x*(2^k-1))/(1-x/(x-1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jan 16 2013
%F A135922 a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3,0,1/2]/QPochhammer[1/2,1/2] = 7.3719688014613... if n is even and c = EllipticTheta[2,0,1/2]/QPochhammer[1/2,1/2] = 7.3719494907662... if n is odd. - _Vaclav Kotesovec_, Aug 23 2013
%F A135922 a(n) = Sum_{k=0..n} qStirling2(n,k), where qStirling2 is the triangle A139382. - _Vladimir Kruchinin_, Feb 26 2020
%F A135922 G.f.: f(1), where f(y) = 1 + x*((y-1)*f(y) + f(2*y)). - _David Bevan_, Jul 28 2022
%F A135922 E.g.f.:  exp(-x)*g(x) where g(x) is the e.g.f. for A006116. (given in D. E. Knuth link) - _Geoffrey Critzer_, May 03 2025
%e A135922 O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-3x)) + x^3/((1-x)*(1-3x)*(1-7x)) + x^4/((1-x)*(1-3x)*(1-7x)*(1-15x)) + ...
%p A135922 b:= proc(n) option remember; add(mul(
%p A135922       (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
%p A135922     end:
%p A135922 a:= proc(n) option remember;
%p A135922       add(b(n-j)*binomial(n,j)*(-1)^j, j=0..n)
%p A135922     end:
%p A135922 seq(a(n), n=0..19);  # _Alois P. Heinz_, Sep 24 2019
%t A135922 Table[SeriesCoefficient[Sum[x^n/Product[(1-(2^k-1)*x),{k,0,n}],{n,0,nn}],{x,0,nn}] ,{nn,0,20}] (* _Vaclav Kotesovec_, Aug 23 2013 *)
%t A135922 b[n_] := b[n] = Sum[Product[(2^(i+k)-1)/(2^i-1), {i, 1, n-k}], {k, 0, n}];
%t A135922 a[n_] := a[n] = Sum[(-1)^j b[n-j] Binomial[n, j], {j, 0, n}];
%t A135922 a /@ Range[0, 19] (* _Jean-François Alcover_, Mar 10 2020, after _Alois P. Heinz_ *)
%o A135922 (PARI) a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-(2^j-1)*x+x*O(x^n))), n)
%o A135922 (Sage) # After _Vladimir Kruchinin_.
%o A135922 def a(n):
%o A135922     @cached_function
%o A135922     def T(n, k):
%o A135922         if k == 1 or k == n: return 1
%o A135922         return (2^k-1)*T(n-1, k) + T(n-1, k-1)
%o A135922     return sum(T(n, k) for k in (1..n)) if n > 0 else 1
%o A135922 print([a(n) for n in (0..19)]) # _Peter Luschny_, Feb 26 2020
%Y A135922 Cf. A006116, A323841, A323842, A323843, A139382, A006455, A356111.
%K A135922 nonn
%O A135922 0,3
%A A135922 _Paul D. Hanna_, Dec 06 2007
%E A135922 References for Stanley graphs added by _David Bevan_, Jul 24 2024