This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135932 #13 May 01 2025 01:40:31 %S A135932 3,7,11,19,23,41,43,47,67,71,83,103,107,113,149,151,157,163,167,199, %T A135932 227,263,269,331,337,347,353,419,431,443,487,491,503,521,587,593,599, %U A135932 607,613,617,619,683,719,787,797,821,827,907,911,919,929,937,941,947 %N A135932 Primes whose integer square root remainder is also prime. %C A135932 The integer square root of an integer x >= 0 can be defined as floor(sqrt(x)) and the remainder of this as x - (floor(sqrt(x)))^2. %H A135932 Robert Israel, <a href="/A135932/b135932.txt">Table of n, a(n) for n = 1..10000</a> %H A135932 Wikipedia, <a href="http://en.wikipedia.org/wiki/Integer_square_root">Integer square root</a> %p A135932 filter:= proc(p) isprime(p) and isprime(p - floor(sqrt(p))^2) end proc: %p A135932 select(filter, [seq(i,i=3..10000,2)]); # _Robert Israel_, Apr 30 2025 %t A135932 f[n_]:=n-(Floor[Sqrt[n]])^2;lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,p]],{n,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Feb 25 2010 *) %o A135932 (PARI) { forprime(p=2, 2000, isr = sqrtint(p); Rem = p - isr*isr; if (isprime(Rem), print1(p, ",") ) ) } %Y A135932 Cf. A053186. %K A135932 nonn %O A135932 1,1 %A A135932 _Harry J. Smith_, Dec 07 2007