This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135950 #38 Jun 11 2024 01:39:52 %S A135950 1,-1,1,2,-3,1,-8,14,-7,1,64,-120,70,-15,1,-1024,1984,-1240,310,-31,1, %T A135950 32768,-64512,41664,-11160,1302,-63,1,-2097152,4161536,-2731008, %U A135950 755904,-94488,5334,-127,1,268435456,-534773760,353730560,-99486720,12850368,-777240,21590,-255,1 %N A135950 Matrix inverse of triangle A022166. %C A135950 A022166 is the triangle of Gaussian binomial coefficients [n,k] for q = 2. %C A135950 The coefficient [x^k] of Product_{i=1..n} (x-2^(i-1)). - _Roger L. Bagula_, Mar 20 2009 %C A135950 Triangle T(n,k), 0 <= k <= n, read by rows given by (-1, 1-q, -q^2, q-q^3, -q^4, q^2-q^5, -q^6, q^3-q^7, -q^8, ...) DELTA (1, 0, q, 0, q^2, 0, q^3, 0, q^4, 0, ...) (for q = 2) = (-1, -1, -4, -6, -16, -28, -64, -120, -256, ...) DELTA (1, 0, 2, 0, 4, 0, 8, 0, 16, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 20 2013 %C A135950 Reversed rows of triangle A158474. - _Werner Schulte_, Apr 06 2019 %C A135950 T(n,k) = Sum mu(0,U) where the sum is taken over the subspaces U of GF(2)^n having dimension n-k and mu is the Moebius function of the poset of all subspaces of GF(2)^n. - _Geoffrey Critzer_, Jun 02 2024 %H A135950 G. C. Greubel, <a href="/A135950/b135950.txt">Rows n = 0..75 of triangle, flattened</a> %F A135950 Unsigned column 0 equals A006125(n) = 2^(n*(n-1)/2). %F A135950 Unsigned column 1 equals A127850(n) = (2^n-1)*2^(n*(n-1)/2)/2^(n-1). %F A135950 Row sums equal 0^n. %F A135950 Unsigned row sums equal A028361(n) = Product_{k=0..n} (1+2^k). %F A135950 T(n,k) = (-1)^(n-k) * A022166(n,k) * 2^binomial(n-k,2) for 0 <= k <= n. - _Werner Schulte_, Apr 06 2019 [corrected by _Werner Schulte_, Dec 27 2021] %F A135950 Sum_{n>=0} Sum_{k=0..n} T(n,k)y^k*x^n/A005329(n) = e(y*x)/e(x) where e(x) = Sum_{n>=0} x^n/A005329(n). - _Geoffrey Critzer_, Jun 02 2024 %e A135950 Triangle begins: %e A135950 1; %e A135950 -1, 1; %e A135950 2, -3, 1; %e A135950 -8, 14, -7, 1; %e A135950 64, -120, 70, -15, 1; %e A135950 -1024, 1984, -1240, 310, -31, 1; %e A135950 32768, -64512, 41664, -11160, 1302, -63, 1; %e A135950 -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1; ... %t A135950 max = 9; M = Table[QBinomial[n, k, 2], {n, 0, max}, {k, 0, max}] // Inverse; Table[M[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Apr 08 2016 *) %t A135950 p[x_, n_, q_] := (-1)^n*q^Binomial[n, 2]*QPochhammer[x, 1/q, n]; %t A135950 Table[CoefficientList[Series[p[x, n, 2], {x, 0, n}], x], {n, 0, 10}]// Flatten (* _G. C. Greubel_, Apr 15 2019 *) %o A135950 (PARI) T(n,k)=local(q=2,A=matrix(n+1,n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1);A[n+1,k+1] %Y A135950 Cf. A022166, A006125, A028361, A127850, A135951 (central terms), A158474. %K A135950 sign,tabl %O A135950 0,4 %A A135950 _Paul D. Hanna_, Dec 08 2007