This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135974 #13 Oct 03 2021 12:18:09 %S A135974 2,4,4,6,6,12,8,12,10,12,12,24,14,16,16,18,18,24,20,24,24,24,24,36,26, %T A135974 28,28,30,30,36,32,36,36,36,36,48,38,40,40,48,42,48,44,48,48,48,48,60, %U A135974 50,54,52,54,54,60,56,60,60,60,60,120,62,63,64,66,66,72,68,70,70 %N A135974 a(n) = the smallest integer m > n such that d(m) > d(n), where d(n) = number of divisors of n. %H A135974 Harvey P. Dale, <a href="/A135974/b135974.txt">Table of n, a(n) for n = 1..1000</a> %e A135974 a(6)=12 because 6 has 4 divisors and the smallest integer > 6 which has more than 4 divisors is 12. %p A135974 with(numtheory): a:=proc (n) local m: for m from n+1 while tau(m) <= tau(n) do end do: m end proc: seq(a(n),n=1..60); # _Emeric Deutsch_, Mar 21 2008 %t A135974 a = {}; For[n = 1, n < 70, n++, i = n + 1; While[ ! DivisorSigma[0, i] > DivisorSigma[0, n], i++ ]; AppendTo[a, i]]; a (* _Stefan Steinerberger_, Mar 16 2008 *) %t A135974 simd[n_]:=Module[{m=n+1,d=DivisorSigma[0,n]},While[DivisorSigma[0,m]<=d,m++];m]; Array[simd,70] (* _Harvey P. Dale_, Oct 03 2021 *) %Y A135974 Cf. A000005, A112275. %K A135974 nonn %O A135974 1,1 %A A135974 _Leroy Quet_, Mar 02 2008 %E A135974 More terms from _Stefan Steinerberger_, Mar 16 2008